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Abstract:

Traditional techniques for classifying the average grain size in gravel bars 
require manual measurements of each grain diameter. Aiming productivity, more 
effi  cient methods have been developed by applying remote sensing techniques 
and digital image processing. This research proposes an Object-Based Image 
Analysis methodology to classify gravel bars in fl uvial channels. First, the study 
evaluates the performance of multiresolution segmentation algorithm (available 
at the software eCognition Developer) in performing shape recognition. The 
linear regression model was applied to assess the correlation between the gravels’ 
reference delineation and the gravels recognized by the segmentation algorithm. 
Furthermore, the supervised classifi cation was validated by comparing the results 
with fi eld data using the t-statistic test and the kappa index. Afterwards, the grain 
size distribution in gravel bars along the upper Bananeiras River, Brazil was 
mapped. The multiresolution segmentation results did not prove to be consistent 
with all the samples. Nonetheless, the P01 sample showed an R2 =0.82 for the 
diameter estimation and R2=0.45 the recognition of the eliptical ft. The t-statistic 
showed no signifi cant diff erence in the effi  ciencies of the grain size classifi cations 
by the fi eld survey data and the Object-based supervised classifi cation (t = 2.133) 
for a signifi cance level of 0.05. However, the kappa index was 0.54. The analysis 
of the both segmentation and classifi cation results did not prove to be replicable.

Resumo: 

As técnicas tradicionais de classifi cação granulométrica em barras fl uviais de 
cascalhos consistem em mensurações do diâmetro dos sedimentos em campo. Em 
virtude do tempo necessário para obter uma amostragem representativa desses 
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sedimentos, surgiu-se o interesse na automatização do processo de classifi cação via processamento digital de imagens. 
O presente trabalho expõe resultados de experimento metodológico de classifi cação de Imagens Baseada em Objetos 
Geográfi cos no trecho composto por barras fl uviais de cascalhos na Bacia do Rio Bananeiras, Brasil. Primeiro, o 
algoritmo de segmentação de imagens multirresolução é aplicado em fotografi as digitais convencionais obtidas em 
campo. O desempenho do segmentador é avaliado através da análise por regressão linear, na qual parâmetros de 
comprimento, largura e encaixe elíptico dos cascalhos, obtidos pelo segmentador são comparados com os mesmos 
parâmetros obtidos por digitalização manual. Posteriormente, o resultado do diâmetro médio obtido na classifi cação 
granulométrica de cada amostra foi comparado com o resultado da classifi cação obtido por amostras de campo. 
A verifi cação foi feita a partir do teste-t e do índice Kappa. Por fi m, os resultados são especializados no mapa de 
distribuição dos sedimentos no trecho estudado. Os resultados da delimitação dos objetos pelo do segmentador 
não foram consistentes para todas as amostras. A amostra P01 apresenta os melhores desempenhos de tanto na 
delimitação dos objetos (R2 =0.82 para o parâmetro largura) como na classifi cação do diâmetro médio, porém 
indicam defi ciência no reconhecimento do contorno dos mesmos (R2= 0.45 para o parâmetro encaixe elíptico). O 
teste-t estatístico não apontou diferenças signifi cativas entre os valores médios das amostras (t = 2.133 para um 
nível de signifi cância α = 0,05). O índice kappa foi 0.54. Embora, os resultados indiquem efi ciência na amostra 
P01, o experimento com o segmentador multirresolução não demostrou potencial de replicabilidade.

1. Introduction

Grain-size distribution is a crucial aspect 
to understand the intensity of the hydrodynamic 
mechanisms in fluvial systems (LEOPOLD et al., 
1964; GREGORY; WALLING, 1973). Along the 
longitudinal profi le of a watercourse the granulometric 
composition varies. The sediment grain sizes tend to 
decrease downstream due to abrasive and selective 
transport processes (FERGUSON et al., 1996, RICE; 
CHURCH, 1998; RICE; CHURCH, 2001; GASPARINI 
et al., 1999; RENGERS; WOHL, 2007; SINGH et al., 
2007 and FRINGS 2008). Downstream areas are often 
non-turbulent and will favor the deposition of sands 
and fi ner materials. Gravel bars prevail in areas with 
waterfalls and rapids.

In Gravel-bed Rivers, the estimation of grain size 

distribution is particularly challenging. The traditional 
method used to characterize the grain-size composition 
in gravel bars dominated sections is made through 
direct measurements on the surface of the exposed 
bar. The individual grains are measured inside a grid 
area determined by the sampler or along the sampler’s 
footpath (WOLMAN; 1954). This traditional method 
is also known as pebble counting. The use of sampling 
grids is often applied as an effi  cient way to prevent bias 
(RICE; CHURCH, 1996). Sampling grids of 60 x 60 cm 
are considered adequate for measuring the sediment size 
in gravel bars (BUNTE et al., 2009). While measuring, 
three perpendicular axes are identified: the major 
axis, or “a-axis”; the minor axis, or “c-axis”; and the 
intermediate axis, or “b-axis” (KRUMBEIN, 1941). 
These correspond to the length, thickness, and width, 
respectively (Figure 1).

Figure 1 - Identifi cation of gravel measurements in accordance with Krumbein (1941). 
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Despite being widely accepted, the pebble 
counting method presents an obstacle. Measurements 
in situ are known to be time-consuming (e.g. time to 
obtain a sample size suitable for statistical analysis 
and characterization). In the search for faster methods, 
photograph-based techniques were developed in the 
1970s.  These techniques are advantageous due to 
their non-invasive approach and their execution speed 
(ADAMS, 1979; IBBEKEN; SCHLEYER, 1986), 
allowing to collect information more rapidly in larger 
sample sizes than traditional sampling methods.

Numerous applications have been built based 
on photographic sampling methods (MCEWAN et 
al., 2000; BUTLER et al., 2001; VAN DEN BERG et 
al., 2002; SIME; FERGUSON, 2003; RUBIN, 2004; 
GRAHAM et al., 2005; BUSCOMBE; MASSELINK, 
2009; WARRICK et al., 2009; CHANG; CHUNG, 
2012, CHUNG; CHANG, 2013). These methods are 
supported by hardware capable of processing a large 
amount of data in order to obtain accurate estimates of 
the average grain diameters (CISLAGHI et al., 2016).

Edged detection applications through image 
segmentation were often implemented (MCEWAN et 
al., 2000; BUTLER et al., 2001; VAN DEN BERG et 
al., 2002; SIME; FERGUSON, 2003; RUBIN, 2004; 
GRAHAM et al., 2005; CHANG; CHUNG, 2012, 
CHUNG; CHANG, 2013). Those applications, known 
as object-based image analysis, have proved consistency 

and reproducibility in estimating the average mean size 
in samples obtained from exposed areas of gravel with 
good lighting (CISLAGHI et al., 2016). However, the 
performance of those methods in gravel-sand mixed 
samples needs to be studied because gravel-sand mixed 
samples can be easily mistaken as homogeneous single 
gavels (BUTLER et al., 2001).

In tropical areas, studies focused on optimizing 
grain-size classifi cation in gravel Bars Rivers using digital 
image processing are not known to be developed so far. 
The grain-size variability in those areas presents a new 
challenge in terms of application.  Therefore, the paper 
addresses this problematic by applying an experimental 
object-based analysis in digital photographs to measure 
the average grain size of fl uvial gravel deposits.

1.1 Field Site

The Bananeiras River basin is part of the drainage 
system of the São João River in the state of Rio de 
Janeiro, Brazil (Figure 2). The Bananeiras River basin, 
together with the basins of the Pirineus River and the 
Águas Claras River, are important tributaries of the 
main drainage system. Originating from the escarpments 
of the Serra do Mar mountain range, these tributaries 
form the high-energy zone of the fl uvial system, which 
is dominated by turbulent fl ows with high erosive 
potential.

Figure 2 - Map of the main course of the São João River basin with a focus on the northern bananeiras river basin. 
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In the Bananeiras River drainage system and 
particularly in the transition from the steep section 
to the flat section, the flow loses energy, which 
favors the deposition of a wide variety of sediments. 
The reworking of these materials by hydrodynamic 
processes in the fl uvial channel environment facilitates 
the development of extended sequences of gravel bars 
with grain sizes that vary from boulders to gravel with 
coarse sand.

2. Methods

2.1 Field procedures and data collection

The sampling was done in seven gravel bars along 
1.3 km in the course of the Bananeiras River towards the 

confl uence with the São João River (Figure 3A). Two 
samples were collected in each of the seven predefi ned 
fl uvial bars. One by photograph and the other by direct 
measurement (pebble counting), both at the same 
location. The sampling was performed on the exposed 
bars during the periods of lowest fl ow. The samples 
corresponded to the N gravels that were contained in a 
0.25 m2 (0.5 x 0.5 m) region.

The photograph-based sampling method was 
applied using a tripod and a Canon digital photographic 
camera with a 37 mm objective lens (Figure 3B). The 
photographs obtained in the fi eld were georeferenced 
and used as the inputs for two types of procedures: 
multiresolution segmentation (BAATZ; SCHÄ PE, 
2000) and manual delimitation of gravels in a 
geographic information system (GIS) environment. 

The polygon vector fi le from the latter procedure 
was used as a reference to evaluate the performance 
of the tested segmentation algorithm such as applied 
in other studies (MCEWAN et al., 2000, BUTLER et 
al., 2001, SIME; FERGUSON, 2003, GRAHAM et 
al., 2005).

In the fi eld, the gravels’ diameter within the sample 
region were measured using a pachymeter in accordance 
with the pebble counting method adapted from Wolman 
(1954). A sample N=30 was used for each experiment. 
The fi eld data were used as a reference to determine 
whether there were significant differences in the 

Figure 3 - a. Sample area in bananeiras river basin. b. Sampling equipment.
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parameters extracted by the multiresolution segmentation 
algorithm, including the average sample size, degree of 
sorting (standard deviation), and skewness as well as 
the textural classifi cation of the sample according to the 
model of Blair; McPherson (1999).

2.2 Reference data

The photographs were referenced to a Cartesian 
plane in a GIS environment and assigned coordinates (x, y) 
with respect to the vertices of the photo frame. The images 
have a spatial resolution of 0.3 mm. It was not necessary 
to orthorectify the images provided they were obtained in 
near-vertical position and the spatial reference is known 
(BUTLER et al., 2001). The delineation of the gravels’ 
outlines was performed in a GIS environment through 
visual interpretation and manual vectorization. This 
reference delineation was used to evaluate the performance 
of the segmentation algorithm (BUTLER et al., 2001, 
GRAHAM et al., 2005, BARNARD et al., 2007). 

2.3 Object-based Image Analysis

Determining the limits between the grains is the 
key step for minimizing errors in automatic grain-
size image analysis (SIME; FERGUSON, 2003). In 
GEOBIA classifi cation, the limits between objects are 

defi ned by image segmentation algorithms. The purpose 
of segmentation is to transform a complex image into 
regions that are internally homogeneous and contrast 
with their surroundings (CASTILLA; HAY, 2008). 

The application of edge detection filters and 
watershed segmentation algorithm did not perform well 
for the tests made in the point bars studied. Sedimentary 
deposits with varying grain sizes, diff erent degrees 
of angularity, and very heterogeneous mineralogical 
compositions are often difficult to separate. This 
heterogeneity requires using a segmentation algorithm 
that is capable to incorporate multiple image-layers. 
This paper evaluates the performance of multiresolution 
segmentation (BAATZ; SCHÄ PE, 2000).

To identify the edges of the objects, multiresolution 
segmentation uses measures of heterogeneity in the 
raster layers values at diff erent scales. During the growth 
of the regions (clustering), the algorithm works with 
the weights between the parameters of color and shape. 
The shape is also considered in relation to the degree of 
compactness or smoothness (BAATZ; SCHÄ PE, 2000). 

Once the image-objects is created the classifi cation 
takes place. The process tree for the proposed GEOBIA 
classification method is shown in Figure 4. Its 
implementation was done at sample P01 and afterward 
replicated to the other samples. 

Figure 4 - Process tree developed for the recognition of outlines and the semi-automatic classifi cation of gravel bars. 
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First, the vector file generated by visual 
interpretation and manual digitalization was loaded 
into eCognition and a segmentation was performed to 
reproduce the reference vector limits (segmentation 
thematic). Afterwards, the feature identifi cation ID from 
the vector fi le was imported from the vector’s attribute 
table (assign class by thematic layer). 

The output vector fi le with validation parameters 

and the ID of each object was exported for statistical 
analysis. The shape parameters width (b-axis), length 
(a-axis), and eliptical ft. (relation between both 
axis) were chosen for validating the multiresolution 
segmentation (Figure 5).  After extracting the validation 
parameters, the manually defi ned limits were deleted 
(deleting segmentation thematic). This process avoids 
introducing user-bias in multiresolution segmentation. 

Figure 5 - Values calculated based on visual interpretation of the data.

The multiresolution segmentation was made on a 
top-down approach up to four levels (segmentation 1, 
2, 3). The top-down approach consists in detecting the 
larger objects (the coarse gravel/cobbles) at the fi rst 
levels and smaller diameter objects (medium-coarse 
gravel) at the subsequent levels. 

The eliptical ft. was used for classifying gravels. 
This parameter has been used in other studies as an 
indicator of the effi  ciency in defi ning the outline of the 
objects (SIME; FERGUSON, 2003; GRAHAM et al., 
2005). A minimum object width of 24 pixels (1 pixel = 
0.3 mm, then 24 x 0.3 = 8 mm) was established as an 
additional criterion (KONDOLF, 1997).

Once the objects attended the classifi cation criteria 
with a likelihood ≥ 0.8 in a segmentation level, they were 

labeled gravels. The gravels were fi ltered for not being 
modifi ed in the subsequent segmentation processes 
(Figure 6). The shape parameters classifi cation criteria 
were unique among all segmentation levels. The 
segmentation parameters vary from one level to another 
because each level intends to identify diff erent grain-
size group gravels. Finally, the objects labeled as gravels 
in all levels were exported and afterward classifi ed in 
Blair; McPherson (1999) intervals.

Table 1 summarizes the segmentation steps and 
shows the number of levels executed, the initial and fi nal 
scales, and the number of classifi ed objects as well as 
those with correlations in the reference fi le. It should be 
noted that only the gravels that had a matching pair in the 
reference fi le were considered in the statistical evaluation.
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2.4 Validation

The validation of the multiresolution segmentation 
in detecting gravel’s outlines was performed using 
ordinary least squares (OLS) regression to assess the 
diff erences between the extracted   values that were 
generated by visual interpretation and the extracted 
values derived by the multiresolution algorithm.

The Spearman correlation coefficients were 
calculated for the pairs of values of the width, 
length, and eliptical ft. of the objects. Due to the 
diff erence in the sample size of the matched pairs, 
the correlations were tested for a signifi cance level 

.

OLS regression has been commonly used to 

validate the textural classifi cation of gravel-bar rivers 
(SIME; FERGUSON, 2003; GRAHAM et al., 2005). 
The outlines’ delimitation were evaluated through the 
shape parameters (length, width, and eliptical ft.). The 
values obtained by manual vectorization (Y

i
) and the 

values obtained by automatic recognition (X
i
) were 

related using the function:

                                        (1)

where  and  are coeffi  cients, and  is the residual 
error.

The standard error in the estimate corresponds 
to the square root of the average residual between 

Figure 6 - Semantic classifi cation network. 

Table 1: Segmentation parameters.

Sample 
point

Initial 
scale

Final 
scale

Levels 
of segmentation

Objects 
Manually 
identifi ed

Objects 
classifi ed by 

GEOBIA

Objects used 
in correlation

1 300 150 3 112 58 43

2 300 150 3 61 68 38

3 300 150 3 77 51 25

4 300 150 3 30 64 22

5 500 200 4 30 23 15

6 300 150 3 30 53 15

7 200 100 3 30 100 24
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the estimated values by the OLS regression and the 
calculated values from the visual delimitation of the 
gravels in accordance with the equation:

                                         (2)

where  is the value that was estimated by the OLS 
regression.

The grain-size estimations between both the 
direct measurements at the fi eld (pebble counting) and 
the GEOBIA classifi cation method were compared. 
Average, standard deviation, skewness and kurtosis are 
well-established statistical parameters in Sedimentology 
(FOLK; WARD, 1957). These parameters were 
estimated using the percentiles D

5
, D

16
, D

25
, D

50
, D

75
, 

D
84

, and D
95

. The results were obtained for each of the 
seven fl uvial bars.

To test the initial hypothesis that there are no 
significant differences between the results of both 
experiments, a t-test was performed for a degree of 

signifi cance  for each 
of the granulometric parameters in the n = 7 fl uvial bars. 

3. Results 

3.1  Multiresolution segmentation performance

The segmentation performance was accessed 
through correlations between the shape parameters 
calculated both manually and automatically. The shape 
parameters used in this research were length (a-axis), 
width (b-axis) and eliptical ft. The results of the 
parameter length (a-axis) were signifi cant (p ≥ 0.95) at 
all locations. The best estimates occurred at P01, P05, 
and P06 (Table 2 and Figure 7).

The parameter width (b-axis) had a similar 
behavior to the length distribution, with R² > 0.9 for P01, 
P05, and P06 (Table 3). In sample P07, the estimate of 
the width was R² = 0.68, signifi cant at a probability of 
85.4%. The results for eliptical ft. showed R² < 0.2 for 
all samples except P01 and P06 (Table 4). 

Table 2: Regression parameters in the estimation of the length of the gravels.

Sample n r t p Signifi cance level St.Err.β

P1 43 0.824 9.314 0.0000 1.0000 0.088

P2 38 0.595 4.440 0.0001 0.9999 0.134

P3 25 0.686 4.525 0.0002 0.9998 0.152

P4 22 0.753 5.110 0.0001 0.9999 0.147

P5 15 0.952 11.182 0.0000 1.0000 0.085

P6 15 0.901 7.480 0.0000 1.0000 0.120

P7 24 0.608 3.596 0.0016 0.9984 0.169

Table 3: Results of the regression analysis for the width.

Sample n r t p Signifi cance level St.Err.β

P1 43 0.903 13.497 0.0000 1.0000 0.067

P2 38 0.618 4.722 0.0000 1.0000 0.131

P3 25 0.642 4.013 0.0005 0.9995 0.160

P4 22 0.633 3.662 0.0015 0.9985 0.173

P5 15 0.964 13.229 0.0000 1.0000 0.073

P6 15 0.900 7.465 0.0000 1.0000 0.121

P7 24 0.306 1.509 0.1456 0.8544 0.203
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Table 4: Results of the regression analysis for the eliptical ft.

Sample n r t p Signifi cance level St.Err.β

P1 43 0.456 3.285 0.0021 0.9979 0.139

P2 38 -0.074 -0.444 0.6599 0.3401 0.166

P3 25 0.176 0.857 0.4003 0.5997 0.205

P4 22 0.137 0.618 0.5437 0.4563 0.222

P5 15 -0.095 -0.344 0.7365 0.2635 0.276

P6 15 0.327 1.246 0.2346 0.7654 0.262

P7 24 0.195 0.930 0.3622 0.6378 0.209

Figure 7 - Results of the segmentation for p1, p5, and p6.
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 3.2  Grain-size classifi cation of fl uvial bars

The D
5
, D

16
, D

25
, D

50
, D

75
, D

84
, and D

95
 percentiles 

were extracted using both methodologies (Table 5). 
They were used to validate the granulometric parameters 
of the fluvial bars estimated through the digital 
processing of images. In the traditional classifi cation 
(pebble counting), exactly 30 gravels were measured 
in each sample portion. The automatic classifi cation 

considered all the gravels classifi ed in the photographs, 
which generated diff erent sample sizes (Table 1).

Both methods measured the length (a-axis) of the 
gravels, which corresponds to the apparent major axis in 
the GEOBIA classifi cation. Using the extracted percentiles, 
the average size of the grains, the sorting of the sediments 
(standard deviation), the skewness and the kurtosis of the 
grains diameter distribution were estimated (table 6).

Table 5: Percentiles (in mm) measured by the pebble counting method and by digital image processing (GEOBIA).

GEOBIA  Pebble counting

D
5

D
16

D
25

D
50

D
75

D
84

D
95

D
5

D
16

D
25

D
50

D
75

D
84

D
95

P1 17.07 30.5 41.1 61.8 81.1 97.0 124.6 37.6 58.5 70.5 78.0 96.0 110.4 128.0

P2 22.02 30.7 40.5 59.7 100.0 104.3 161.2 32.8 42.8 61.0 66.5 89.0 108.8 153.5

P3 17.43 22.9 30.3 46.1 78.0 86.7 129.5 26.6 38.0 49.0 56.2 75.5 80.6 121.6

P4 15.45 22.4 28.2 40.8 70.0 92.7 125.0 32.3 40.0 63.0 67.0 111.3 147.2 190.2

P5 19.65 28.6 33.9 51.5 81.3 87.9 122.8 25.8 41.9 52.0 58.7 80.7 95.4 113.7

P6 17.70 24.4 31.4 40.4 48.6 61.6 102.0 36.1 41.9 48.0 50.0 65.7 80.8 91.1

P7 13.80 18.7 21.0 30.3 47.2 62.2 81.0 18.7 30.9 43.7 45.2 51.2 59.4 72.0

Table 6: Descriptive statistical parameters of the diameter distribution of the grains.

Samples
GEOBIA Pebble counting

Mean
Standard 
deviation

Skewness Kurtosis Mean
Standard 
deviation

Skewness Kurtosis

1 63.0869 32.9254 0.0145 1.1027 82.2933 26.6618 0.1766 1.4513

2 64.8870 39.5028 0.0475 0.9592 72.7133 34.7703 0.3624 1.7660

3 51.8875 32.9468 0.3807 0.9633 58.2833 25.0364 0.2599 1.4685

4 51.9743 34.1845 0.5077 1.0750 84.7333 50.7318 0.5284 1.3416

5 56.0317 30.4704 0.3049 0.8933 65.3433 26.6906 0.3103 1.2523

6 42.1457 22.0785 0.2996 2.0178 57.5600 18.0709 0.5389 1.2711

7 37.0400 21.0393 0.4892 1.0529 45.1900 15.1958 -0.0003 2.9126

The textural classifi cations of gravel bars were 
based on Blair; McPherson (1999). The comparison 
between the fi eld measurements classifi cation and the 
GEOBIA classifi cation results are depicted in table 
7. The non-parametric accuracy test of the GEOBIA 
classifi cation was accessed through the Kappa index. 
The result is shown in table 8. Table 9 shows the results 
of the parametric test for the method evaluation. The 
parametric t-test was applied to compare the statistical 
parameters between both methods for the n= 7 samples.

The spatial representation of the studied area is 
shown in fi gure 8. Slightly diff erences in grain size 
average between both methods resulted in diff erent 

classifi cations in the Blair; McPherson (1999) intervals. 
The natural breaks classifi cation was chosen for its 
capability to represent the downstream reduction in 
grain-size averages in both methods. 

4. Discussions

4.1 Multiresolution segmentation performance

One of the main goals of this paper was to evaluate 
the performance of the multiresolution segmentation 
algorithm in delineating the gravels in photographic 
samples of a river basin located in a tropical region, in 
which the intensity of geomorphic process is known to 
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produce abundant sediment load varying in grain sizes 
composition (LATRUBESSE et al., 2005). Previous 
studies pointed out the importance in investigating the 
performance of segmentation algorithms in gravel bar 
samples with mixed sand (BUTLER et al., 2001). The 
results obtained here provided helpful insights regarding 
effi  ciency and replicability. 

The effi  ciency of segmentation tends to be lower 
for gravel bed samples with mixed sand (BUTLER et 
al., 2001; CISLAGHI et al., 2016). The performance 
of the multiresolution segmentation in P05 showed the 
sand matrix is being mistaken as unique gravels. In that 
case, new objects were created increasing the counting 
of coarser gravels in the samples. This behavior, known 
as over-segmentation, was detected previously in 
studies applying the watershed segmentation algorithm 

(STROM et al., 2010, CHUNG; CHANG, 2013). 

In general, certain light conditions can create 
shadows that interfere with the automatic grain size 
estimates (GRAHAM et al., 2005; BUSCOMBE; 
MASSELINK, 2009; WARRICK et al., 2009). For 
example, sediments type which alternate light and dark 
colors together with non-optimal light conditions may 
impact negatively the segmentation results (CISLAGHI 
et al., 2016). The gravels which have in its internal 
composition alternate light and dark colors imposed an 
obstacle to the multiresolution segmentation, especially 
at P02, P03 and P04. At these samples, those gravels 
were over-segmented. At the sample P05, the contrast 
generated by the presence of dark gravels over a 
clear sandy matrix facilitated the performance of the 
multiresolution segmentation.

Table 7: Comparison of the results of the classifi cation in the Blair; McPherson (1999) model.

 Samples
GEOBIA Pebble counting

Mean size (mm) Class Mean size (mm) Class

1 63 Coarse Gravel 82 Very Coarse Gravel

2 65 Very Coarse Gravel 73 Very Coarse Gravel

3 52 Coarse Gravel 58 Coarse Gravel

4 52 Coarse Gravel 85 Very Coarse Gravel

5 56 Coarse Gravel 65 Very Coarse Gravel

6 42 Coarse Gravel 58 Coarse Gravel

7 37 Coarse Gravel 45 Coarse Gravel

Table 8: Kappa index Manual x GEOBIA Classifi cations 

   GEOBIA classifi cation  

  Coarse gravel Very coarse gravel  

Pebble 
counting 

classifi cation

Coarse gravel 3 0 3

Very coarse gravel 3 1 4

 Total 6 1 7

Kappa 
statistics

Agreement 3 1 4

By chance 0.367346939 0.081632653 0.44898

kappa 0.542056075  Total accuracy  0.571428571

Table 9: Analysis of the diff erences between the averages based on the t-test.

t p de t Signifi cance level
Mean size 2.133 0.05427 0.94573

Sort -0.44558 0.6638 0.3362
Skewness 0.18226 0.8584 0.1416
Kurtosis 1.822 0.09345 0.90655
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The multiresolution segmentation algorithm 
estimated dimensions (a-axis and b-axis) of the gravels 
that correlate well with the actual values, which are 
assumed to match the visual interpretations. The 
automatic segmentation was unable to accurately delimit 
the edge of the grains to defi ne the shape. Crenulated 
edges, the division of the grains, and even advancement 
over the matrix or neighboring grains resulted in a 
diff erent eliptical ft. of the automatically delimited 
objects from those that were delimited manually.

The multiresolution segmentation performed 
better for samples composed mainly of rounded grains 
than for the ones with larger elongated grains. The 
same behavior was observed while applying the digital 
cutting method (DCM) (VAN DEN BERG et al., 2002). 
The latter method’s performance was compared with 
the watershed segmentation method, which is a well-
established methodology for automatic grain-size 
classifi cation for homogeneous gravel bar samples 
(MCEWAN et al., 2000; BUTLER et al., 2001; SIME; 
FERGUSON, 2003; RUBIN, 2004; GRAHAM et al., 

2005, CHANG; CHUNG, 2012, CHUNG; CHANG, 
2013). Larger elongated grains are known to also reduce 
the accuracy of 3D grain size classifi cation methods 
(PEARSON et al., 2017).

4.2 Grain-size classifi cation of fl uvial bars

The GEOBIA classifi cation accuracy assessment 
provided signifi cant information regarding the overall 
method, with important considerations in terms of bias 
and method’s validation.

The percentile diameters estimated by GEOBIA 
were lower than those from the traditional classifi cation 
(pebble counting). The disparities in the percentiles 
estimations generated differences in the textural 
class assignment. The samples P01, P04, and P05 
were assigned to diff erent Blair; McPherson (1999) 
textural classes in the method’s comparison. They were 
classifi ed as coarse gravels in the GEOBIA classifi cation 
instead of the very coarse gravels estimated by the 
fi eld reference classifi cation. The omission evidence 

Figure 8 - Spatial representation for the both methods using natural breaks classifi cation intervals.
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responded for the Kappa index 0.54.

The underestimation observed in the GEOBIA 
classification outcome from the limitations of the 
photograph-based methods in detecting three dimensions 
(ADAMS, 1979; BUTLER et al., 2001, STROM et al., 
2010, CISLAGHI et al., 2016). Thus, imbricated or 
partially buried gravels tend to have lower values in the 
GEOBIA extraction method. Recently, a method based 
on 3D high-resolution topographic models showed 
reduced eff ects of imbrication and reliable estimates of 
surface roughness, which combined with photographic 
based methods can provide the most reliable grain size 
measures for large areas (PEARSON et al., 2017).

A previous study demonstrated reduced errors 
at higher percentiles and worst estimates in lower 
percentiles associated with vegetation issues such as 
dirt and cobble texture (CISLAGHI et al., 2016). The 
results in this paper showed GEOBIA classifi cation had 
the worst grain size estimates between the intervals 32 
mm and 64 mm. The best estimates were for the gravels 
with an axis more than 80 mm long.  The results were 
accurate for both gravels with very small diameters, 
such as the fi ne gravel (8 mm<D<16 mm), and for the 
very coarse gravel (64 mm<D<128 mm). 

Despite the differences in the classification 
results, the average diameters obtained at P01, P04, 
and P05 were close to the threshold for very coarse 
gravel (64 mm) in the Blair; McPherson (1999) textural 
classifi cation intervals. Thus, even though they had 
values close to the average diameter of the grains, 
these samples were classifi ed by the GEOBIA method 
as coarse gravels.

Considering the calculated values for [t,p=1-
0.05/2, df=2(7-1)], the comparison between the average 
grain sizes resulted in p values of t = 0.05427 (very low), 
which involves accepting the initial hypothesis of no 
diff erences between the methods for a signifi cance level 
of 94.57%. The results also did not indicate diff erences 
in the kurtosis with a signifi cance level of 91%. The 
t-test results indicate signifi cant diff erences between 
the classification methods regarding the degree of 
sediment sorting, which is most likely because GEOBIA 
overestimates the variety of diameters caused by the 
problems of shape recognition. The diff erences in the 
asymmetry of the portions cannot be considered because 
the values for both methods fall within the confi dence 
interval for n = 7, so the distribution of the grain sizes 

is symmetric for both experiments. 

Diff erent from the non-parametric Kappa accuracy 
index, the t-test disguised the observed limitations 
from the multiresolution segmentation in detecting the 
borders from the objects. 

The GEOBIA classifi cation method using Blair; 
McPherson (1999) intervals at table 7 did not register 
textural changes in the fl uvial bars at the confl uence 
with the tributary channel (P02, P03, and P04). The 
contribution of fi ne sediments from secondary channels 
refl ects selective transport mechanisms. At the exit to 
the main channel, the river fl ow loses energy and creates 
conditions for the deposition of fi ne grains (RICE, 1998; 
RICE; CHURCH, 1998). This expected behavior was 
observed in the fi eld measurement classifi cation, where 
the samples P02 and P03, located in the confl uence zone, 
presented fi ning in average grain sizes.

The GEOBIA classifi cation by natural breaks 
illustrated the expected structural gradient from 
upstream to downstream (SCHUMM; STEVENS, 
1973; FERGUSON et al., 1996; RICE, 1998; RICE; 
CHURCH, 1998; GASPARINI et al., 1999; RENGERS; 
WOHL, 2007; SINGH et al., 2007; FRINGS, 2008) and 
diff erences in the classifi cation of the point bars at the 
confl uence with the tributary channel.

5. Conclusions

Once the process tree was defined and the 
appropriate adjustments were made to the model, a 
considerable timewise improvement was observed. 
The required work time was reduced by approximately 
80%, including the fi eld sampling phase that is required 
for measuring the gravels. However, the productivity 
gains were not followed by accuracy levels found in the 
previous works discussed in this paper.

The classifi cation model performed well for the 
sample P01, which had gravels with a low degree of 
angularity, an absence of a sandy matrix, uniformity in 
the colors, and high contrast with neighboring gravels. 
The results were not consistent in the other samples and 
the model did not show replicability.

The estimates obtained from the regression 
analysis show stronger correlations with the estimates 
of the length (major axis) and width (minor axis). 
The results for the eliptical ft. parameter illustrated 
the defi ciency of the multiresolution segmentation 
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algorithm in recognizing shapes even though this 
parameter was used as a criterion for refining the 
segmentation of the gravels in the photographs.

In general, the multiresolution segmentation 
algorithm was not capable of recognizing shapes and 
patterns. The results obtained from delimiting the 
extremities of the objects indicate that the algorithm 
could estimate the diameters with a slightly better 
effi  ciency. 

The analysis of the percentiles demonstrated 
that there was a similarity in the results of the 
distribution curves that are associated with the D

75
 

and D
95

 percentiles, whose granulometric intervals 
were between 64 and 128 mm. In contrast, the largest 
diff erences between the percentiles were related to 
the D

5
, D

16
, and D

25
 percentiles, which generally were 

between 32 and 64 mm. 

The results of the variance analysis (t-test) 
demonstrated that there are no signifi cant diff erences 
between the two methods in terms of the classifi cation 
of the average size of the sediments in the fl uvial bars, 
which is estimated based on the major axis or the length 
of the grains. 

Despite the t-test indicated no significant 
diff erences between both methods, the multiresolution 
segmentation demonstrated ineffi  ciency in detecting the 
edges of the gravels and the classifi cation model did not 
show replicability. 

6. References

ADAMS, J. Gravel size analysis from photographs: Journal of 

Hydraulics Division, ASCE, v.105, n. 10, p. 1247–1255, 1979.

BAATZ, M.; SCHÄ PE, A. Multiresolution Segmentation: 

an optimization approach for high quality multi-scale 

image segmentat ion. Angewandte Geographische 

Informationsverarbeitung XII. Beiträge zum AGIT-

Symposium Salzburg 2000, Karlsruhe, Herbert Wichmann 

Verlag, p. 12–23, 2000. 

BARNARD, P. L.; RUBIN, D. M.; HARNEY, J.; MUSTAIN, 

N. Field test comparison of an autocorrelation technique for 

determining grain size using a digital “beachball” camera versus 

traditional methods. Sedimentary Geology, v. 201, n. 1–2, p. 

180–195, 2007. 

BLAIR, T. C.; MCPHERSON, J. G. Grain-size and textural 

classification of coarse sedimentary particles. Journal of 

Sedimentary Research, v. 69, n. 1, p. 6–19, 1999. 

BUNTE, K.; ABT, S. R.; POTYONDY, J. P.; SWINGLE, K. 

W. Comparison of three pebble count protocols (EMAP, PIBO, 

and SFT) in two mountain gravel-bed streams. Journal of 

the American Water Resources Association, v. 45, n. 5, p. 

1209–1227, 2009. 

BUSCOMBE, D.; MASSELINK, G. Grain-size information 

from the statistical properties of digital images of sediment. 

Sedimentology, v. 56, n. 2, p. 421–438, 2009.

BUTLER, J. B.; LANE, S. N.; CHANDLER, J. H. Automatic 

extraction of grain-size data from gravel surfaces using digital 

image processing. Journal of Hydraulic Research, v. 39, p. 

519-529, 2001.

CASTILLA G.; HAY, G. J. Image objects and geographic 

objects. In:  Object-Based Image Analysis: Spatial Concepts 

for Knowledge-Driven Remote Sensing Applications 

(BLASCHKE, T.; LANG, S.; HAY, G. J. Editors) Springer-

Verlag, Berlin, Heidelberg, p. 91-111. 2008

CHANG, F. J.; CHUNG, C. H. Estimation of riverbed grain-

size distribution using image-processing techniques. Journal 

of Hydrology, v. 440–441, p. 102–112, 2012. 

CHUNG, C. H.; CHANG, F. J. A refi ned automated grain sizing 

method for estimating river-bed grain size distribution of digital 

images. Journal of Hydrology, v. 486, p. 224–233, 2013. 

CISLAGHI, A.; CHIARADIA, E. A.; BISCHETTI, G. B. A 

comparison between diff erent methods for determining grain 

distribution in coarse channel beds. International Journal of 

Sediment Research, v. 31, n. 2, p. 97–109, 2016.

FERGUSON, R.; HOEY, T.; WATHEN, S.; WERRITTY, A. 

Field evidence for rapid downstream fi ning of river gravels 

through selective transport. Geology, v. 24, n. 2, p. 179–182, 

1996. 

FOLK, R. R. L.; WARD, W. W. C. Brazos River Bar: A 

study in the signifi cance of grain size parameters. Journal of 

Sedimentary Research and Petrology, 1957. 

FRINGS, R. M. Downstream fi ning in large sand-bed rivers. 

Earth-Science Reviews, v. 87, n. 1–2, p. 39–60, 2008. 

GASPARINI, N. M.; TUCKER, G. E.; BRAS, R. L. Downstream 

fining through selective particle sorting in an equilibrium 

drainage network. Geology, v. 27, n. 12, p. 1079–1082, 1999. 

GRAHAM, D. J.; REID, I.; RICE, S. P. Automated sizing 

of coarse-grained sediments: Image-processing procedures. 

Mathematical Geology, v. 37, n. 1, p. 1–28, 2005. 



Grain-Size Measurements of Fluvial Gravel Bars Using Object-Based Image Analysis

Rev. Bras. Geomorfol. (Online), São Paulo, v.19, n.1, (Jan-Mar) p.59-73, 2018

GREGORY, K.J.; WALLING, D.E. Drainage Basin Form and 

Process: a geomorphological approach. Edward Arnold Ltd. 

ISBN: 0-470-32673-5, 1973, 472p.

IBBEKEN, H.; SCHLEYER, R. Photo-sieving: A method for 

grain-size analysis of coarse-grained, unconsolidated bedding 

surfaces: Earth Surface Processes Landforms, v. 11, no. 1, 

p. 59–77, 1986.

KONDOLF, G. M. Application of the pebble count: Notes on 

purpose, method, and variants. Journal of the American Water 

Resources Association, v. 33, n. 1, p. 79–87, 1997. 

KRUMBEIN, W.C. Statistical summary of some alluvial gravels. 

Natural Recourses Council (B) p. 9-45, 1941.

LEOPOLD, L.B.; WOLMAN, M.G.; MILLER, J.P. Fluvial 

Processes in Geomorphology. San Francisco, CA: W.H. 

Freeman. 1964, 522p. 

LATRUBESSE, E. M.; STEVAUX, J. C.; SINHA, R. Tropical 

rivers. Geomorphology, v. 70, n. 3–4 SPEC. ISS., p. 187–206, 

2005.

MCEWAN, I. K.; SHEEN, T. M.; CUNNINGHAM, G. J.; 

ALLEN, A. R.; Estimating the size composition of sediment 

surfaces through image analysis. Proceedings of the ICE - 

Water and Maritime Engineering, v. 142, n. 4, p. 189–195, 

2000. 

PEARSON, E.; SMITH, M.; KLAAR, M.; BROWN, L. Can 

high resolution topographic surveys provide reliable grain size 

estimates? Geophysical Research Abstracts EGU General 

Assembly, v. 19, n. May, p. 2017–14095, 2017.

RENGERS, F.; WOHL, E. Trends of grain sizes on gravel bars 

in the Rio Chagres, Panama. Geomorphology, v. 83, n. 3–4, p. 

282–293, 2007. 

RICE, S. Which tributaries disrupt downstream fi ning along 

gravel-bed rivers? Geomorphology, v. 22, n. 1, p. 39–56, 1998.

RICE, S.; CHURCH, M. Sampling surfi cial Fluvial Gravels: the 

precision of size distribution percentile estimates. Journal of 

Sedimentary Research, v. 66, n. 3, p. 654–665, 1996. 

RICE, S.; CHURCH, M. Grain size along two gravel-bed rivers: 

statistical variation, spatial pattern and sedimentary links. Earth 

Surface Processes and Landforms, v. 23, n. 4, p. 345–363, 

1998. 

RICE, S.; CHURCH, M. Longitudinal profi les in simple alluvial 

systems. Water Resources Research, v. 37, n. 2, p. 417–426, 

2001. 

RUBIN, D. M. A Simple Autocorrelation Algorithm for 

Determining Grain Size from Digital Images of Sediment. 

Journal of Sedimentary Research, v. 74, n. 1, p. 160–165, 

2004. 

SCHU MM, S.A.; STEVENS, M.A., Abrasion in place: a 

mechanism for rounding and size reduction of course sediments 

in rivers. Geology v. 1, p. 37–40, 1973.

SIME, L. C.; FERGUSON, R. I. Information on grain sizes 

in gravel-bed rivers by automated image analysis. Research 

Methods Papers, v. 73, n. 4, p. 630–636, 2003. 

SINGH, M.; SINGH, I. B.; MÜLLER, G. Sediment 

characteristics and transportation dynamics of the Ganga River. 

Geomorphology, v. 86, n. 1–2, p. 144–175, 2007. 

STROM, K. B.; KUHNS, R. D.; LUCAS, H. J. Comparison 

of Automated Image-Based Grain Sizing to Standard Pebble-

Count Methods. Journal of Hydraulic Engineering, v. 136, n. 

8, p. 461–473, 2010.

VAN DEN BERG, E. H.; MEESTERS, A. G. C. A.; KENTER, J. 

A. M.; SCHLAGER, W. Automated separation of touching grains 

in digital images of thin sections. Computers and Geosciences, 

v. 28, n. 2, p. 179–190, 2002.

WARRICK, J. A.; RUBIN, D. M.; RUGGIERO, P.; HARNEY, 

J. N.; DRAUT, A. E.; BUSCOMBE D. Cobble cam: grain-size 

measurements of sand to boulder from digital photographs 

and autocorrelation analyses. Earth Surface Processes and 

Landforms v. 34, p. 1811–1821, 2009.

WOLMAN, G. A method for sampling Coarse River bed 

material. Transactions American Geophysical Union, v. 35, 

n. 6, p. 951–956, 1954. 


