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Abstract: Landslides are devastating events with global implications, impacting human lives and infrastructure. 

Understanding their patterns of occurrence and identifying susceptible regions is crucial to minimizing their impact. 

Probabilistic susceptibility mapping is a widely used method for studying landslides, providing a detailed spatial overview. 

By characterizing the terrain attributes of areas where landslides have and have not occurred, and extrapolating these patterns 

to the entire study area, a landslide probability map is generated. Although these methods are proven to be efficient, they are 

often implemented using paid software or restricted access programming languages, which makes it difficult for other 

researchers to reproduce them. This article presents a free and open-access approach to mapping landslide susceptibility using 

the Google Earth Engine platform, encompassing all the necessary modeling steps. To illustrate how it works, we carried out 

a case study for the municipalities of São Sebastião and Ilhabela, in southeastern Brazil. The landslide susceptibility map 

resulting from this application obtained a ROC curve value of 0.931. 5.4% of the study area is highly susceptible to landslides, 

and these areas are distributed across the municipalities. Ultimately, this method offers a quick, accessible and low-cost 

computational solution for an initial mapping of landslide susceptibility. 

Keywords: Terrain attributes; Google Earth Engine; Random Forest. 

Resumo: Deslizamentos de terra são fenômenos devastadores com implicações globais, afetando vidas humanas e 

infraestruturas. Compreender seus padrões de ocorrência e identificar as regiões mais suscetíveis é crucial para minimizar 

seus impactos. O mapeamento probabilístico de suscetibilidade é um método amplamente utilizado para estudar os 

deslizamentos de terra, fornecendo uma visão espacial detalhada. Ao caracterizar os atributos do terreno de áreas onde 

ocorreram e não ocorreram deslizamentos de terra, e extrapolar estes padrões para toda a área de estudo, é gerado um mapa 

de probabilidade de deslizamentos. Embora estes métodos sejam comprovadamente eficientes, são frequentemente 

implementados utilizando softwares pagos ou linguagens de programação de acesso restrito, o que dificulta a sua reprodução 

por outros investigadores. Este artigo apresenta uma abordagem gratuita e de acesso livre para mapear a suscetibilidade a 

deslizamentos de terra utilizando a plataforma Google Earth Engine, englobando todas as etapas necessárias para a 

modelagem. Para ilustrar o seu funcionamento, realizamos um estudo de caso para os municípios de São Sebastião e Ilhabela, 

no sudeste do Brasil. O mapa de suscetibilidade a deslizamentos de terra resultado desta aplicação obteve um valor de curva 

ROC de 0.931. 5,4% da área de estudo possui alta suscetibilidade a deslizamentos de terra, estando estes espaços bem 

distribuídos nos municípios. Em última análise, este método oferece uma solução rápida, acessível e sem custos para um 

primeiro mapeamento da suscetibilidade a deslizamentos de terra. 

Palavras-chave: Atributos de terreno; Google Earth Engine; Random Forest.  
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1. Introduction 

Landslides are events of soil, rock, and rock debris disintegration and transportation downhill under the force 

of gravity (BIGARELLA, 2003). Events of different natures are called landslides, such as rockfall and rockslide, 

rock rolling, mudslides, creep and mud, soil, and debris avalanches (VARNES, 1976). In general, these events are 

primarily reported in areas with high slopes and are induced by intense and prolonged rainfall that overloads the 

soil (CRUDEN, 1991). The geological context, such as the proximity of geological faults or the presence of specific 

rocks, can also facilitate the occurrence of these phenomena (KAMP et al., 2008; CLERICI et al., 2010). Although 

landslides occur naturally, when they affect urban areas, they cause human and material damage. Population 

growth, the expansion of cities and the existence of vulnerable economic groups are factors that drive the 

occupation of risk areas, increasing the chances of occurrence and the destructive potential of landslides (DAI et 

al., 2001; TEIMOURI; GRAEE, 2012). Climate and environmental changes, which have intensified since the second 

half of the 20th century, have also increased the frequency of extreme events and their negative impacts (CROZIER, 

2010). In this context, knowing the characteristics of the occurrence of these phenomena and indicating the 

locations with the greatest potential for being affected are actions that help to reduce losses (BRITO, 2014). 

In the scientific literature, we find different methods for assessing landslides. We can highlight the elaboration 

of mass movement inventories, representing the location of identified and recorded events; the susceptibility 

assessment, indicating the probability of landslides occurring in a locality based on its terrain attributes; the hazard 

assessment, indicating the chances of landslides happening in a locality based on its terrain attributes and the 

frequency of occurrence of these events; and the risk assessment, indicating the chances of a locality being affected 

based on its terrain attributes, frequency of events and possible consequences for exposed human and material 

elements. Of these approaches, susceptibility assessment is the most widely used because its results are easy to 

interpret and spatially explicit, its preparation is less complex than that required for risk and danger assessment, 

and it requires the use of a considerably reduced data set (MANTOVANI et al., 1996; GUZZETTI et al., 1999; FELL 

et al., 2008). In this approach, relevant spatial variables are used to indicate susceptibility to landslides. Remote 

sensing and geoprocessing data, especially digital elevation models (DEMs) and geological maps, are widely used 

because they allow terrain attributes to be interpreted quickly and easily, characterizing the space to be assessed 

(VAN WESTEN et al., 2000). 

Two approaches to assessing landslide susceptibility are notable: the heuristic method and the probabilistic 

method. In the heuristic method, experts are consulted and determine the relative importance of the explanatory 

variables and stipulate weights for landslide occurrence based on the values of these variables (usually terrain 

attributes, geology, land use, etc). The weights and the importance defined for each variable are multiplied and the 

result expresses a landslide susceptibility surface (FELL et al., 2008). For the probabilistic method, it is necessary 

to define samples of occurrence and non-occurrence of landslides and use a classification method to differentiate 

the samples. This technique is based on characterizing the terrain attributes of areas where landslides occur and 

do not occur, and then extrapolating these patterns to the entire study area. The result of this process is a 

probabilistic surface indicating susceptibility to landslides, allowing the researcher to differentiate areas with a 

higher and lower degree of susceptibility (ZHANG et al., 2017; TAALAB; CHENG; ZHANG, 2018). Both 

approaches have positive and negative points. In both methods, the definition of predictive variables can be carried 

out based on expert knowledge. On the other hand, if there are samples of landslide, the choice of predictive 

variables can be based on statistical tests. In this case, the subjectivity of the definition is reduced by measuring the 

ability of the variables to represent the spatial distribution of the phenomenon. The heuristic method does not 

require an inventory of landslides, but it does require consultation with experts and their results are usually 

adjusted to a specific area. In the probabilistic method, the construction of a landslide scar inventory is required, 

but the weights are adjusted by automated computation making it easier to extrapolate to other areas. However, 

in the probabilistic method, the weights are defined in order to better divide the sample set of occurrences and 

non-occurrences, and do not indicate probabilities for terrain attributes based on consolidated knowledge. For a 

good training, it is necessary to guarantee the quality of the data provided. Thus, both methods are useful and 

should be used considering the data and resources available for the study area. Their results indicate a first 

approach to identifying locations susceptible to landslides, delimiting priority zones for monitoring and mapping 

on a large scale of detail (VAN WESTEN et al., 2003; AYALEW et al., 2004; YALCIN, 2008; GEMITZI et al., 2011). 

The scientific literature offers a variety of techniques to map susceptibility to landslides. Reichenbach et al. 

(2018) in research where 565 articles of landslide susceptibility modeling were evaluated from 1986 to 2016, 
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demonstrating that the 15 most used statistical methods are 1) logistic regression (AYALEW; YAMAGISHI, 2005; 

LEE, 2005; HEMASINGHE. et al, 2018; WUBALEM; METEN, 2020), 2) data overlay (AWAWDEH; ELMUGHRABI; 

ATALLAH, 2018; ARUMUGAM et al. 2023), 3) neural networks (OLIVEIRA et al., 2019; WANG; FANG; HONG, 

2019), 4) index based (CANTARINO et al., 2018), 5) multi-criteria decision (GIGOVIĆ; DROBNJAK; PAMUČAR, 

2019; Khalil et al. 2022), 6) weight of evidence (LEE; CHOI 2004; ARMAŞ, 2011; GETACHEW; METEN, 2021), 7) 

fuzzy sets (BAHRAMI; HASSANI; MAGHSOUDI, 2020; AGHDA; BAGHERI; RAZIFARD, 2017), 8) probability 

based (ROODPOSHTI; ARYAL; PRADHAN, 2019), 9) heuristic (SHARMA; MAHAJAN, 2018; OZIOKO; IGWE, 

2020), 10) linear regression (ONAGH; KUMRA; RAI, 2012), 11) tree based (ERMINI; CATANI; CASAGLI, 2005; 

YEON; HAN; RYU, 2010; CATANI et al., 2013; KIN et al., 2017; ARABAMERI et al., 2021); 12) safety factor (RAY; 

JACOBS; BALLESTERO, 2011; NATH; SENGUPTA; SRIVASTAVA, 2021), 13) discriminant analysis (PHAM; 

PRAKASH, 2017; WANG; CHEN; CHEN, 2020), 14) support vector machine (POURGHASEMI et al., 2013; 

HUANG; ZHAO, 2018; LEE; HONG; JUNG, 2017) and 15) bivariate analysis (NOHANI et al., 2019; MERSHA; 

METEN, 2020). In addition, the authors point out that in the last years of the analysis the methods based on machine 

Learning have become preferred. 

However, although statistical methods are described as efficient techniques (MERGHADI et al., 2020) they 

often require the use of machines with good processing capacity and paid software, making it difficult for 

researchers who do not have these resources. It is also observed that in most published works the researchers do 

not make public the computational codes used, preventing the analysis of the processes and the replication of the 

methodology. 

In this context, we present a probabilistic method for landslide susceptibility mapping using the Google Earth 

Engine (GEE) platform. GEE is a free online platform that allows remote sensing data to be processed in a cloud 

environment based on JavaScript language and using Google's computer. Since its launch, it has gained 

considerable notoriety, with numerous highly relevant studies elaborated using the platform (SOUZA et al., 2020; 

ZHAO et al., 2021; BROWN et al., 2022). Among its main attractions are free access; the availability of a large 

catalog of remote sensing data; cloud data processing, not requiring offline processes or use of the user's computer 

memory; and the possibility of interacting with other researchers, facilitating joint work and the sharing of 

methodologies (GORELICK et al., 2017). 

The aim of developing a probabilistic methodology for assessing landslide susceptibility on GEE is to enable 

other users to have easy access to an open script made on a free platform. All the processing is carried out on 

Google's computer infrastructure, which makes it possible for anyone to reproduce the computational 

methodology independently of the computer used. DEMs are available in the platform's catalog and the creation 

of morphometric variables relevant to landslide analysis is automated. The algorithm used for modeling was 

Random Forest because it is available on GEE and has comparable performance to Deep Learning methods that 

require more processing power (OLIVEIRA et al., 2019), and its use has increased considerably in landslide 

modeling since 2014 (MERGHADI et al., 2020). Statistical evaluation of the data used in the model and its results, 

and training validation were also implemented. Thus, we consider that the greatest contribution of this work is the 

development of a probabilistic method to evaluate the susceptibility to landslides in a free platform with cloud 

processing. However, the provision of the samples required for the method to perform and the definition of the 

explanatory variables must be determined taking into account the specific context of each application. The results 

obtained indicate a first approximation in the assessment of susceptibility, helping to better allocate resources in 

future studies. In addition, to present the method, an application was carried out for two municipalities on the 

southeast coast of Brazil. 

2. Materials and Methods 

Figure 1 shows a summary flowchart of the methodology. The main stages are: 2.2 sampling of the occurrence 

and non-occurrence of landslides; 2.3 composition of the database; 2.4 training of the model; 2.5 statistical 

evaluation of sampling and results and 2.6 evaluation of the accuracy of the susceptibility surface. 
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Figure 1. Methodology flowchart. 

 

2.1 Study area 

 

The study area for this application is the municipalities of São Sebastião and Ilhabela, located on the north 

coast of the state of São Paulo, in southeastern Brazil (Figure 1). They are part of the Serra do Mar relief unit, with 

a highland morphology contoured by the coastal plain (AB’SABER, 2010). Its lithology is made up of exposed rocks 

from the Brazilian crystalline shield, with altitudes ranging from 0 to 1366 m, with an average of 388 m (CPRM, 

2006; NASA, 2023). The pedology is predominantly made up of shallow Haplic Cambisol, covered by dense 

Atlantic Forest vegetation (ROSSI, 2017). The climate is characterized as tropical humid without drought, with a 

higher concentration of rainfall in the summer season and less in the winter season (MENDONÇA; DANNI-

OLIVEIRA, 2013). The study area is very popular due to its beaches and proximity to large cities such as São Paulo. 

At the same time as there are high-end condominiums that house the tourists who visit the region, there are also 

homes of the poor population with precarious infrastructure located in risky places such as steep areas and near 

hilltops (MARANDOLA JUNIOR et al., 2013; G1, 2023). 
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Figure 2. Location of the study area. 

On February 19, 2023, a storm hit the northern coast of São Paulo, generating an accumulated rainfall of 683 

mm in 24 hours, the highest rainfall recorded in Brazil's history for the same period. This event was the result of a 

combination of factors: a cold front coming from the south of the continent met an area of low atmospheric pressure 

in the Atlantic Ocean, making it possible for clouds with a lot of moisture to form. The contact of this cold front 

with warm winds from the northeast of Brazil, the above-average temperature of the Atlantic Ocean and the 

orographic effect of the Serra do Mar intensified the phenomenon and kept it parked over the municipalities, 

providing the extreme rainfall (G1, 2023; BBC, 2023). 

These rains contributed to the occurrence of numerous landslides, such as those shown in figure 3, 

representing the landslide scars after the events. Due to the large amount of rainfall, the soil became saturated with 

water, resulting in mass movements that transported soil and vegetation from sloping areas to flat areas, where 

the material was deposited. The areas hit by the landslides were seriously affected, resulting in the deaths of more 

than 60 people and displacing thousands of residents. The landslide scars resulting from this event were used to 

assess landslide susceptibility in these municipalities (GUERRA, 1994; G1, 2023). 

 

  
Figure 3. Landslide scars. 
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2.2 Sampling for training and accuracy assessment 

 

Training a probabilistic landslide susceptibility model requires sampling places that represent the occurrence 

and non-occurrence of this phenomenon. This sample set is necessary to characterize and differentiate between 

areas subject and not subject to landslides (KALANTAR et al., 2017; GAIDZIK; RAMIREZ-HERRERA, 2021). The 

inputs required in the script for sampling are: 

● roi, delimitation of the study area; 

● ls_scar, delimitation of landslide scars; 

● digital elevation model (DEM), the DEM used in the study. 

The delimitation of the study area refers to the region where it is desired to assess susceptibility to landslides. 

Commonly in work in this area, the study region is defined as a watershed, relief partition, political boundary, etc 

(QASIMI et al., 2023). Landslide scars, on the other hand, indicate the occurrence area of this phenomenon in a 

specific event or in a compilation of events (OLIVEIRA et al., 2019). DEM is the base product used to create the 

predictive variables (PHAM, BUI; PRAKASH, 2018). At this stage, the DEM is used to define the image's pixel grid. 

In this script, the definition of the study area can be done directly in the GEE, by selecting a vector from the 

platform's data catalog or creating the vector itself; or it can be obtained outside the platform and uploaded. 

Landslide scars can also be made inside or outside the platform. In the case of landslide scars, the most commonly 

used method for their delimitation is polygonization by visual identification comparing images from before and 

after the event/s of interest. There are digital image processing techniques that use optical and/or SAR data to 

segment the scar area. However, due to limitations such as clouds, shadows and noise inherent in data capture, 

the segmentation of scars using these techniques tends to be less accurate than those carried out by visual 

interpretation (GHORBANZADEH et al., 2019; HANDWERGER et al., 2022). 

Once we have defined the study area and the landslide scars, we can generate point samples to represent the 

occurrence and non-occurrence of landslides. For the occurrence class, we use the boundary of the landslide scars 

to generate a sample for each pixel within the boundary. The pixel grid used in this sampling must be the same as 

that present in the defined DEM. For the non-occurrence samples, there are studies in the scientific literature that 

discuss the best spatial arrangement, with a variety of possible arrangements (LUCCHESE; OLIVEIRA; 

PEDROLLO, 2021; RABBY; LI; HIFALU, 2023). In this script, four different approaches to non-occurrence sampling 

were automated: 

i) considering the boundary of the study area; 

ii) considering areas with a slope greater than x° within the study area;  

iii) considering a buffer of x meters from the landslide scars; 

iiii) considering areas with a slope greater than x° within a buffer of x meters from the landslide scars. 

For all four methods, a filter was used to eliminate the samples allocated within a 60 m buffer from the 

landslide scars. This restriction aims to mitigate possible errors in vectorization, ensuring that the neighboring 

pixels of the locations delimited as scars, allocated within the buffer, are disregarded from the non-occurrence 

sampling. 

Having chosen the non-occurrence sampling method, we can generate random samples for this area. For this 

script, a ratio of 1:1 was established for occurrence and non-occurrence samples. However, the user can define 

other proportions if desired. With the two sample sets created, they are grouped and divided for training and 

evaluation of training accuracy. 

For the case study that we carried out, the study area was obtained from the Brazilian Institute of Geography 

and Statistics (IBGE) and the landslide scars were delimited by visual interpretation in the Google Earth Pro 

software and then uploaded to the GEE. The occurrence samples were generated from the delimitation of the 

landslide scars and allocated to the pixel grid of the NASADEM digital elevation model. The non-occurrence 

samples were generated using method i. Model examples were not made for all the non-occurrence sampling 

methods, because this would generate an excessive number of results, and the main objective of this article is to 

present a probabilistic landslide modeling method and not to evaluate sampling methods. Method i was chosen 

among the others in order to demonstrate that the program allows the evaluation of landslide susceptibility for the 

whole of a study area. Often, when performing an initial analysis of a study area, researchers aim to differentiate 

the most susceptible areas from the others. Even knowing that in some terrain attributes (such as low slope) the 

probability of occurrence of landslides is very low, it is desired that the map of susceptibility to landslides covers 
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the entire study area investigated. However, if future users wish to exclude areas with specific terrain 

characteristics, it is possible to use the other methods of sampling of nonoccurrence. 

A total of 1223 samples were defined for each class and 70% of the total was divided up for training and 30% 

for accuracy assessment. For the accuracy assessment, 366 occurrence samples and 366 non-occurrence samples 

were used. 

2.3 Database composition 

In addition to occurrence and non-occurrence samples, modeling requires defining spatial variables that can 

explain the phenomenon. In applications like this, it is common to use DEMs and by-products because of their 

ability to represent the shape of the surface. Furthermore, DEMs are available globally, facilitating their use and 

the replication of methodologies. Other products not related to the topographic surface, such as land use maps, 

pedology and geology are also frequently used. In this work, we only use variables derived from DEMs because 

they are globally available on the GEE platform, while data such as pedology and geology are not. However, if 

future users wish to add variables other than those derived from DEMs, this can be easily done (Park; Lee, 2014; 

Wubalem, 2021).  

To compose the database, 11 morphometric indices generated from a DEM or inserted as ready-to-use 

products by the GEE data catalog were automated. The objective is to process and define variables relevant to the 

modeling of landslides exclusively in the GEE platform, enabling the replication of the procedure to other locations 

simply by changing the delimitation of the study area. The inputs required to define the training variables are: 

● roi, delimitation of the study area 

● mde, digital elevation model 

● tagee, (Terrain analysis in GEE) module for terrain analysis in GEE 

● fwacc, flow accumulation 

● hand, height above the nearest drainage 

The DEM used was NASADEM, a product resulting from the reprocessing of Shuttle Radar Topography 

Mission (SRTM) data with improved accuracy (NASA, 2023). If the user wishes, it is possible to define another 

DEM as input data for generating the variables. From this product and the terrain functions available in the GEE, 

it is possible to extract Slope (SLP), representing the slope of the terrain in degrees; Aspect (ASP), the orientation 

of the terrain in degrees and HillShade (HLSH), a gray scale of the shading of the terrain with adjustable angle of 

orientation and slope. 

From the DEM and the TAGEE package it is possible to generate the variables Northness (NTS), showing the 

degree of orientation of the terrain to the north; Eastness (ETS), the degree of orientation of the terrain to the east; 

Horizontal Curvature (HCUR), the tangent curvature in relation to the contour line and Vertical Curvature 

(VCUR), the tangent curvature in relation to the slope line. The NTS and ETS variables are highly correlated with 

the ASP variable. The use of correlated variables tends to slow down the modeling process and add little 

information. However, these data were used in the modeling to illustrate the possibility of using these variables in 

GEE. (Safanelli et al., 2020). 

The variables Height Above the Nearest Drainage (HAND), indicating the height of a pixel above the nearest 

drainage; and Flow Accumulation (FWACC), the size of the drained area for each pixel; were added as ready-to-

use products from the GEE catalog (DONCHYTS et al., 2016; YAMAZAKI et al., 2019).  

The Horizontal Distance to the Nearest Drainage (HDND) data, representing the horizontal linear distance 

from a cell to the nearest drainage; and the Topographic Position Index (TPI), representing the relative elevation 

of a cell in relation to its surroundings; were derived from other variables by implementing formulas via computer 

programming. The HDND variable is described by equation 1. 

𝑑 = √(𝑥𝐵 − 𝑥𝐴)² +  (𝑦𝐵 − 𝑦𝐴)²                                                             
(1) 

Where the Euclidean distance (d) of FWACC pixels with a drainage area greater than 0.5 km² (A) to the other 

pixels in the study area (B) is described by their difference in latitude (y) added to the difference in longitude (x). 

Equation 2 was used to formulate the TPI variable. 

𝑇𝑃𝐼 = 𝑝 − 𝑥 
(2) 
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Where TPI is defined by the elevation of a pixel (p) subtracted by the average of a 5x5 window in its 

neighborhood (x).  

If the user wishes to use variables other than those already automated, they can be added by uploading them 

to the platform. For our case study, the predictive variables were composed using only the data available on the 

platform in order to evaluate the performance of a landslide susceptibility model carried out exclusively on GEE. 

Variables that describe geological characteristics are widely used in this type of modeling, but because they are not 

available in GEE we decided not to add them to modeling. However, if users of the program wish to add geological 

data from outside the GEE catalog, this can be done. 

After defining the variables, a data cube was created to aggregate them. They were all resampled to a pixel 

size of 30 m and referenced to the WGS84 coordinate system. 

2.4 Random Forest classification 

Probabilistic landslide susceptibility modeling is based on a supervised approach that requires the provision 

of data for training a classifier (REICHENBACH et al., 2018; SUN et al., 2021). To carry out this step, inputs are 

required: 

● training samples, sample set defined for training; 

● data cube, set of selected explanatory variables. 

From these data, the values of the explanatory variables contained in the data cube are extracted for each 

sampling point where the pixel coordinates (x and y) match those of the samples. The aim of this stage is to extract 

information that characterizes the occurrence and non-occurrence samples, providing the classifier with data that 

makes it possible to differentiate them based on the values obtained from the explanatory variables. 

The classifier used in this application is the Random Forest, which is non-parametric and capable of estimating 

a value or assigning an object to a class. A non-parametric method does not assume the distribution in space or the 

structure of the classifier. From the samples provided for training (containing in the attribute table: occurrence = 1, 

non-occurrence = 0 and the value of the explanatory variables) and using regression analysis, the classifier divides 

the samples into increasingly homogeneous subsets based on the values extracted from the explanatory variables. 

The parameter for the division is to choose the value of the prediction attribute that minimizes the uncertainty in 

the division of the sample set. In a decision tree, a sample is classified by the average of the subset where it is 

allocated in the regression analysis. Its definitive label in a Random Forest classification is the result of the 

classification in the various regression trees, being the value that has been repeated the most times in these various 

trees (BREIMAN, 2001). 

A random sample subset is used to train each decision tree in order to avoid overfitting and insert variability. 

The number of samples for each decision tree is defined by the square root of the total number of samples used in 

training. A sample is usually used in more than one decision tree, generating more than one classification for the 

same sample point and reducing the overall error. Samples not used in the training of a specific tree are called 'Out 

of bag' (OOB) and are used to evaluate training performance. The OOB samples pass through the trees that did not 

see them in training and are classified. This classification is compared with the true label for the sample (knowing 

that it has been through training in other decision trees) to calculate the error. The average of the errors for all the 

OOB samples is the out-of-sample error estimate for a Random Forest classification. In short, the higher the 

generalization capacity of the Random Forest, the lower the error estimate (GOOGLE, 2023; GOOGLE EARTH 

ENGINE, 2023). 

The importance of the variables used to train the model is assessed by the information gain obtained by 

splitting a subset/node. Using the GINI impurity index, which indicates the degree of mixing of the classes in the 

sample set, the difference between the value of a node and the value obtained by its child is estimated. This step is 

important for identifying which variables are most significant for the classification and to evaluate if the set of 

variables used allows achieving the defined objective. The Gini impurity is given by equation 3. 

𝐼 = 1 − (𝑂² + 𝑁𝑂²)                                                                          (3) 

Where the Gini index (I) is defined by the sum of the fraction of occurrence (O) and non-occurrence (NO) 

samples squared and subtracted by 1. Subtracting the Gini index of a node from that obtained by its child reveals 
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the rate of information gain in this division.  The script has been automated to display the degree of importance of 

the variables in percentages, making it easier to interpret the data (GOOGLE, 2023). 

After training the samples, the next step is to extrapolate the identified patterns to the area of interest. Using 

the same data cube used for training, with information for the entire study area, a classification is made based on 

the values of the variables on a pixel scale, indicating for each cell its degree of susceptibility to landslides. Equation 

4 represents this process 

 𝑃𝑥𝑖𝑗 = 𝑓(𝑂𝑖𝑗  , 𝑁𝑂𝑖𝑗)                                                                           (4) 

where the probability of landslides (P) occurring in a pixel (x) is determined by the values of the explanatory 

variables (ij) conditioned on the values of the explanatory variables in pixels defined as occurrence (Oij) and non-

occurrence of landslides (NOij). The symbol f in the formula represents the method used to train and differentiate 

the occurrence and non-occurrence samples containing the values extracted from the explanatory variables. 

The classification result is a landslide susceptibility surface ranging from 0 (low probability) to 1 (high 

probability). We recommend that the area used to extrapolate the patterns identified from the training data should 

be the same as that used to define the non-occurrence samples. However, if the user desires, it is possible to 

extrapolate to other areas. But, by altering or expanding the extrapolation area, there is no guarantee that the 

identified patterns will remain valid. Additionally, we have automated the grouping of susceptibility levels into 

classes, allowing the user to define the desired number of classes and cutoff thresholds. 

For our case study, 128 decision trees were defined and the final susceptibility surface was extrapolated to the 

same area used to create the non-occurrence samples. This number of decision trees was defined based on the 

performance of the ROC curve. Several rounds were carried out and it was noticed that after 128 trees the ROC 

curve value increased insignificantly, while the training time increased considerably. The other parameters were 

not tested, being used the standard established by GEE. 

After generating the susceptibility surface, it was downloaded and ArcGIS Pro software was used for 

cartographic representation. 

2.5 Statistical evaluation of training data and results 

In addition to developing a probabilistic landslide susceptibility model, it is important to statistically evaluate 

the samples used in the training and the results provided by the classification (Shano; Raghuvanshi; Meten, 2020; 

Fleuchaus et al., 2021). The inputs required at this stage are: 

● roi, delimitation of the study area; 

● landslide scars, delimitation of landslide scars. 

● training samples, sample set used for training; 

● validation samples, sample set used for accuracy assessment; 

● occurrence samples, set of occurrence samples used in training; 

● non-occurrence samples, set of non-occurrence samples used in training; 

● data cube, explanatory variables listed; 

● landslide susceptibility surface, product resulting from the classification. 

At this step, the data present in the modeling is examined using four approaches: i) evaluating the distribution 

of the values that the training samples received from the variables contained in the data cube by BoxPlot; ii) 

evaluating the histogram of the values that the training samples received from the variables contained in the data 

cube; iii) evaluating the histogram of the values that the accuracy assessment samples received from the landslide 

susceptibility surface; and iiii) evaluating the histogram of the landslide susceptibility surface for the study area 

and for the delineation of landslide scars. 

In the first approach (i), the Box Plot graph shows the minimum and maximum values observed; the median; 

the first quartile, defining the limit that divides ¼ of the samples with the lowest values and the third quartile, 

representing the limit that divides ¼ of the samples with the highest values. By comparing the Box Plot graph for 

the occurrence and non-occurrence samples with a specific variable from the data cube, we can analyze if the 

variable is capable of differentiating the two sample groups. This step is important for evaluating the data used to 

train the model, helping to remove or add explanatory variables with the aim of improvement and parsimony. In 
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the way that the script was written, the user needs to indicate which variable in the data cube they want to evaluate 

using the BoxPlot method. 

The second evaluation approach (ii) attempts to provide complementary information to that obtained in the 

first (i). In this case, a histogram is used to evaluate the frequency distribution of the values that the samples 

provided for training received for the variables in the data cube. In short, a graph is generated where the 'x' axis 

shows the values of a variable, and the 'y' axis shows the frequency, the number of samples allocated to a value 

interval. This approach allows detailed characterization of how the samples were described by the variables used 

in the training, making it easier to interpret the power of sample differentiation by the variables of interest. It also 

makes it possible to demonstrate if the sample set is effective for the research objective, and can indicate possible 

failures and/or outliers in the sampling process. 

The third evaluation approach (iii) intends to represent how the samples used to evaluate the model are 

characterized by the probability surface. In the case of a perfect fit, we would have all the occurrence samples 

allocated to the highest levels of susceptibility, and all the non-occurrence samples to low levels. In landslide 

models, it is common to have a mixture between the two sample sets due to the random sampling method. In 

addition to evaluating the accuracy of the training, this statistical evaluation is useful for indicating the strengths 

and weaknesses of the model results. 

The fourth evaluation approach (iiii) aims to analyze the landslide susceptibility surface. Using a histogram, 

we evaluated the model's result for the entire study area and for the boundary of the landslide scars. Evaluating 

the frequency distribution for the whole study area is important for providing information on the amount of area 

allocated to each degree of susceptibility, indicating the size of the area susceptible to landslides. On the other 

hand, analyzing how the boundary of the landslide scars is described by the probability surface is a way of 

evaluating the model's performance. As the areas of the landslide scars are identified as places where the 

phenomenon occurs, it is expected that this area will be allocated to high levels of susceptibility. If this is not the 

case, there may be confusion in sampling or in the model's formulation. For this approach, the 'x' axis of the graph 

will represent the susceptibility to landslides in percentage; while the 'y' axis represents the number of pixels 

allocated to a susceptibility interval. 

For our case study, all four approaches were carried out. After the data was processed in GEE, it was 

downloaded and Excel software was used for customization and graphical presentation. 

2.6 Evaluation of model training accuracy 

Evaluating the accuracy of model training is an essential modeling step. Only in this way can we measure the 

classifier's ability to differentiate the training samples and the amount of information added by the modeling 

(Fleuchaus et al., 2021). This stage requires the inputs: 

● sampling for accuracy assessment, sample set with 30% of total samples; 

● surface susceptibility to landslides, the result of the classification. 

 The evaluation of the model's training serves as a measure of the fit of the samples (containing occurrences 

and non-occurrences) in relation to the result of the probability surface. The sample set used to evaluate training 

accuracy is not used to train the model in order to guarantee a bias-free approach, evaluating the model from 

unknown samples. 

It is important to emphasize that this stage is used to assess the accuracy of the training, not the accuracy of 

the final susceptibility map. In cases such as the one we performed, where the training is performed with samples 

of occurrence of only one event of landslides, despite dividing 30% of the occurrence samples exclusively for the 

accuracy assessment, these samples are spatially and temporally correlated with the samples used in the training. 

Thus, when we assess accuracy in this way, there is a tendency for the fit to be considerably higher because the 

training and validation samples are correlated. If we consider this result as the ability of the probability surface to 

indicate future landslide events, we will have a misleading interpretation. In these cases, in order to estimate the 

probability surface's ability to predict future events, it would be necessary to use uncorrelated samples from 

another landslide event. Knowing this, we emphasize that the results of the accuracy assessment should be 

interpreted with care, recognizing the limitations of the proposed method. 

To estimate the training performance, we implemented the ROC (Receiver Operating Characteristic) curve 

method, which is widely used to evaluate binary data samples in relation to a continuous surface. The ROC curve 
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evaluates the rate of samples classified correctly (true positives) and incorrectly (false positives) by the model for 

each degree of probability of the susceptibility surface. The true positive rate can be calculated using equation 5, 

while the false positive rate is measured using equation 6. 

𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (5) 

𝐹𝑃𝑅 =  𝐹𝑃/(𝐹𝑃 + 𝑇𝑃) (6) 

where the true positive rate for each degree of probability (TPR) is obtained by dividing the number of true 

positives (TP) by the sum of true positives and false negatives (TP + FN). While the false positive rate for each 

degree of probability (FPR) is obtained by dividing the number of false positives (FP) by the sum of false positives 

(FP) and true positives (TP). The area under the curve (AUC), commonly used in this evaluation, is a way of 

simplifying the analysis of the ROC curve by averaging the value of the true positive and false negative rates of all 

thresholds. An AUC value of 1 indicates a perfect fit, while a value of 0.5 indicates a fit equal to randomness. Values 

below 0.5 represent unrealistic models. 

Two main characteristics inherent in the formulation of probabilistic landslide susceptibility models can 

influence the performance of the ROC curve. i) Landslides are events that tend to be concentrated in relatively 

small areas of space. When assessing landslide susceptibility for a watershed, municipality or buffer around 

landslide scars, the area of occurrence will be considerably reduced, possibly less than 1% of the total study area. 

ii) When we generate a landslide susceptibility model for an area such as a watershed and do not use any type of 

restriction to allocate the non-occurrence samples (as in method i presented in section 2.2), many of these will be 

allocated to areas that are obviously not susceptible to landslides (such as low slopes), while another considerable 

portion will be allocated to areas that are potentially susceptible to landslides (such as high slope areas). This is 

because in these cases the non-occurrence samples are distributed randomly. 

For the first situation listed (i), the occurrence samples used for training and evaluating the model will be little 

distributed in the study area analyzed and allocated to a considerably reduced space. This arrangement can 

introduce a bias into the analysis, because the occurrence of a landslide event can be induced by variables other 

than just terrain attributes, such as rainfall concentrated over a short period of time in specific spaces of the study 

area. It is important to investigate the characteristics of the event/s used to generate the model, understanding that 

the result of the probability surface will be relative to an event/s that occurred under specific conditions. It will be 

useful for predicting a future event with the same conditions as the event modeled. In the same way, despite the 

known difference in size between the occurrence and non-occurrence classes in the study area, the number of 

occurrence and non-occurrence samples has equal proportions in the accuracy assessment. A much larger number 

of non-occurrence samples located in areas previously known not to be susceptible to landslides would increase 

the accuracy assessment in a potentially misleading way. 

For the second situation highlighted (ii), in non-occurrence sampling, points that are allocated to areas that 

are obviously not susceptible to landslides will increase the AUC value in a way that may be misleading, because 

a model that indicates that areas with low slopes are not susceptible to landslides does not add new information 

to what is already known1. On the other hand, non-occurrence samples that are allocated to areas susceptible to 

landslides will decrease the AUC in an equally misleading way. This is because the model result will consider these 

areas as susceptible due to their attributes being similar to those of the occurrence areas, and because the sampling 

is random, these areas are sampled as non-occurrence. 

Pontius and Parmentier (2014) evaluated the use of the ROC curve in models with Boolean variables and 

indicated some recommendations for its use. Among the main suggestions, they point out that in addition to the 

AUC value, it is also important to analyze the shape of the ROC curve. As different curve shapes can result in 

 
1  This is an ambiguous situation. Although it is known that areas with low slopes are not susceptible to landslides, in most 

studies researchers aim to develop a model for their entire study area. In these cases, non-occurrence samples at low slopes are 

necessary for training the model. Also, although low slopes do not cause landslides, the material resulting from this 

phenomenon tends to be deposited in flat areas. Therefore, by using the difference image technique to delimit the landslide 

scars, the areas where material is deposited are sampled and inserted into the model. This adds greater variability to the 

occurrence data values and makes it difficult to divide the two sample groups. When evaluating the model's performance, it is 

important to take into account the characteristics of the phenomenon being studied and the modeling method used. 

Understanding these variables helps to better understand the results of the accuracy assessment. 
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identical AUC values, presenting the shape of the curve makes it clearer for the reader to see the model's 

performance. The authors point out that for applications to rare and spatially restricted phenomena (such as 

landslides), it is important to analyze the fit of the ROC curve at its lower limit. This is because the lower limit of 

the curve represents the rate of true and false positives for low susceptibility indices; a poor fit in this region would 

indicate gross errors. On the other hand, in landslide susceptibility models, a worse fit of the ROC curve at its 

upper limit is more common and acceptable. Due to the fact that non-occurrence sampling is carried out randomly, 

part of the sample points are allocated to high susceptibility indices, increasing the rate of false positives. Another 

recommendation highlighted by the researchers is to map the density of sample presence within each compartment 

of the ROC curve. This analysis is implemented in the code by approach (iii) in section 2.5 and should be interpreted 

in conjunction with the ROC curve. 

In this sense, knowing the details of each user's particular application is important in order to interpret the 

results of the training accuracy assessment critically, enhancing communication to readers and potential users of 

the data. Likewise, it is also important to understand how the methods used for the evaluation work, making it 

possible to communicate the results transparently. 

3. Results 

The result of the spatial modeling for the study area is shown in figure 4. The degree of susceptibility to 

landslides for each pixel is represented, making it possible to differentiate between spaces considered more and 

less susceptible. In green are the areas with the lowest susceptibility to landslides, while in red are the areas with 

the highest susceptibility. In yellow are the areas considered to be of intermediate susceptibility. We can see that 

the locations considered to be less susceptible by the model are mainly concentrated in flat areas close to the coast, 

in valley bottoms and locations close to the hydrographic network, while the most susceptible areas have been 

allocated to hilltops, in areas with greater horizontal and vertical distance to the hydrographic network. 

 

 

Figure 4. Landslide susceptibility map. 
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Figure 5 (A) shows that most of the pixels in the study area were considered to have a low susceptibility to 

landslides by the model result. 74% of the pixels were considered to have a susceptibility equal to or less than 0.4. 

While 5.4% of the pixels were considered to have a susceptibility equal to or greater than 0.7. 

When we analyze figure 5 (B), representing the result of the susceptibility surface for the boundary of the 

landslide scars, we see that most of the pixels are allocated to the highest levels of susceptibility. 72% of the pixels 

are allocated to susceptibility levels equal to or greater than 0.7. While 3.4% are allocated to levels of 0.4 or less. 

 

 

Figure 5. A) Histogram of the landslide susceptibility map for the entire study area. B) Histogram of the landslide 

susceptibility map for the boundary of the landslide scars. 

Figure 6 shows the areas indicated by the modeling with landslide susceptibility greater than or equal to 0.7. 

When seeking to mitigate the human and material impacts that future landslides could cause, it is important to 

evaluate the areas classified by the model with high susceptibility indices, as these areas are likely to be the regions 

that will be affected. Thus, thinking about the organization of space, housing and infrastructure construction 

should be avoided in these areas in order to mitigate future damage. At the same time, knowing that landslides 

generate a mass flow that will only be deposited in flat areas, construction should also be avoided in areas that are 

likely to be depositories for the displaced sediment. 
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Figure 6. Landslide susceptibility map greater than or equal to 0.7. 

The most important variables in training the model are shown in figure 7. FWACC, NTS and HAND were the 

most important, while ETS, ASP and HLSH were the least important. 

 

  

Figure 7. Importance of variables in classification. 

In figure 8 we observed through Boxplot the distribution of the values that the samples used in the training 

received from the predictive variables. From this approach, we can evaluate the differentiation capacity of the 

sample set by these variables. We noticed small differences between the occurrence and non-occurrence samples 

for most variables. Among the most important variables in training, only NTS showed considerable differences 

between occurrence and non-occurrence. On the other hand, the ASP variable, which was the second least 
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important in training, showed significant differences between the samples of occurrence and non-occurrence. The 

differences that can be observed between occurrence and non-occurrence samples occur mainly in the amplitude 

and concentration of the data. 

 

  

Figure 8. Boxplot of samples used to train the model. 

In addition to the Boxplot approach, figures 9 and 10 present a histogram analysis for the values that the 

samples used in the training received from the predictive variables. This approach allows a detailed 

characterization of the distribution of these values, presenting information that can be difficult when we only 

analyze the Boxplot charts. 
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Figure 9. Histogram of samples used to train the model. 

Looking at the histogram graphs, we can see that the values of some variables are very concentrated in specific 

ranges. This is the case of the variables FWACC and HAND, concentrated in the lowest values; NTS, concentrated 

in both extremes and TPI, HCUR and VCUR, concentrated in intermediate values. It is also interesting to note the 

specific behavior of the FWACC variable, which obtained the greatest importance in classification. Although its 

values for the samples of occurrence and not occurrence are very concentrated in the shortest intervals, we noticed 

that in the highest levels of the series there are no samples of occurrence. In this sense, despite the high 

concentration of samples in this variable, the classifier interprets that pixels with high values of FWACC are not 

susceptible to sliding. This is coherent, because the highest values of FWACC are allocated in the hydrographic 

network or near it, being in most cases flat areas.  
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Figure 10. Histogram of samples used to train the model. 

The evaluation of the model's training accuracy received an AUC value of 0.931. Figure 11 shows the shape of 

the ROC curve for this approach. We noticed that a good fit was obtained for the lower limit of the curve. From 

the susceptibility values of 0 to 0.6, the rate of true positives was close to 1 and the rate of false positives close to 0. 

From the level of 0.6 we observed a considerable increase in the rate of false positives and a decrease in the rate of 

true positives. This behavior is a result of what was exposed in section 2.6, being associated with the model 

formulation.  
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Figure 11. ROC curve for the landslide susceptibility map. 

Figure 12 shows the distribution of the samples used to assess the training accuracy, we notice that the samples 

of occurrence are concentrated in the highest levels, while those of non occurrence in the lowest. For occurrence, 

61% of the samples are allocated at susceptibility levels equal to or greater than 0.7; while for non occurrence, 76% 

of the samples are allocated at levels equal to or lower than 0.4. This result is as expected and helps to understand 

the behavior of the ROC curve. We can see that the greatest degree of mixing between occurrence and non-

occurrence occurs for the intermediate values of the susceptibility surface, which is exactly the area of the two-

dimensional space of the ROC curve with the worst performance. 

 

  

Figure 12. Histogram of the accuracy assessment samples for the landslide susceptibility map. 

4. Discussion 

The field of research in Remote Sensing is constantly evolving. The launch of new sensors, the availability of 

open data and the creation of innovative methodologies are examples of scientific advances in this area. In this 

context of constant progress, the GEE platform has gained considerable notability by being free and allowing the 

cloud processing of a wide variety of geospatial data through computational programming. The possibility of users 

accessing and developing their methodologies on the platform allows democratizing the act of doing science, not 

requiring a computer with great processing capacity or the use of paid software for conducting research 

(GORELICK et al., 2017). 



Revista Brasileira de Geomorfologia, v. 25, n. 2; e2491; 2024 19 de 24 

Revista Brasileira de Geomorfologia. 2024, v.25 n.2; e2491; DOI: http://dx.doi.org/10.20502/rbg.v25i2.2491 https://rbgeomorfologia.org.br 

In the scientific literature, there are not many works on modeling landslide susceptibility using the GEE 

platform, only two were found. The oldest available is the work by Ilmy, Darminto and Widodo (2021), where the 

authors assessed landslide susceptibility in southern Indonesia. And the work by Wu et al. (2022), which assessed 

an area in southern China. Both studies used a previously prepared landslide inventory, predictive variables with 

spatial information and machine learning algorithms. In our application, GEE demonstrated considerable 

adaptability to perform the modeling. All the necessary steps for the model formulation could be performed using 

exclusively the functions available on the platform with a reduced processing time. For the case study presented, 

all stages of the program and the resulting images were processed in less than five minutes. If we compare this 

method to others that require the formulation of samples and training variables in a GIS software and script 

processing using the memory of an offline computer, we will see very different processing times. In addition, when 

we compare the method presented with other approaches that assess landslide susceptibility using GEE, we 

observe that our approach differs from others due to the automation of sampling and the creation of training 

variables on the platform itself; and the availability of the code used. These features make modeling faster and 

facilitate access to the model by other researchers. 

The formulation of a methodology for assessing susceptibility to landslides using GEE was successful. The 

intention in proposing and describing in detail this application is to enable researchers to have easy access to a free 

methodology, fast processing and low computational cost, allowing anyone to access a computer modeling method 

for assessing susceptibility to landslides. From the platform it was possible to create i) samples of occurrence and 

non occurrence of landslides; ii) morphometric indexes based on a DEM and its grouping in a data cube; iii) the 

training of a probabilistic model for susceptibility to landslides using Random Forest; iiii) the statistical evaluation 

of the samples used in the training and the results of the model and iiiii) the evaluation of the training accuracy. 

All these steps are widely described in the scientific literature and necessary to perform the modeling. Its open 

availability can facilitate the work of modelers. 

On the other hand, some limitations can be highlighted. The GEE interface does not allow the editing and 

creation of a cartographic layout for the model's resulting image. The same is true for graphics, because the GEE 

interface allows relatively limited style adjustments. Therefore, if users want a better presentation of the graphs 

and maps resulting from the model, we recommend downloading the data and processing it in traditional 

software’s. However, this is only a style question, because data visualization is available on the platform itself. In 

addition, although the platform's data catalog contains many products, it may happen that the user wishes to add 

a variable that is not present in the GEE database, especially for geological data. In these cases, it will be necessary 

to have this data for the study area of interest and the user will have to load the desired variable and insert it into 

the code. 

For the application carried out, we consider the model's performance to be acceptable, with an ROC curve 

value comparable to other studies in the scientific literature. However, for a careful comparison of this 

methodology with others that are already established, it would be necessary to carry out case studies under 

controlled conditions. Furthermore, it should be emphasized that the result of the accuracy assessment refers to 

the training of the model. In this way, the probability surface should be used with caution, as it represents a first 

approximation for the study area. 

5. Conclusions 

As has been demonstrated, modeling landslide susceptibility requires several steps. Traditionally, researchers 

need to use several programs for modeling, including paid software. This often hinders the work, making it more 

time consuming and sometimes preventing the fulfillment of some tasks. In this work, we present a methodology 

for assessing landslide susceptibility on the GEE platform. The main contribution of this method is to perform all 

necessary steps of landslide susceptibility modeling in a single open access computation environment. Automating 

the workflow in a cloud environment allows any researcher to have access to a computational method that allows 

an initial investigation of landslide susceptibility without requiring the processing capacity of their machine. The 

script developed is available at the end of this article and can be reproduced by other researchers for their specific 

purposes. 

The results of the case study presented are a first approximation to indicate the places most susceptible to 

landslides. It is observed that 5.4% of the study area was classified with an index of susceptibility to landslides 

equal to or above 0.7, indicating a large coverage and distribution of susceptible areas. These results may help in 
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future studies that aim to characterize in detail the locations most susceptible to landslides, making it possible to 

allocate resources more appropriately. 
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