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Abstract: Assessing landslide susceptibility in a municipality is crucial for disaster prevention, and Artificial Neural Networks 

(ANN´s) have proven effective in this analysis. This study aimed to model landslides susceptibility in the municipality of 

Joinville, Santa Catarina state, southern Brazil, using ANNs. The municipality has a significant history of such events, allowing 

for an inventory of occurrence areas (OC) through polygon mapping on satellite images. For non-occurrence areas (NO), a 1 

km radius buffer was used, subtracting OC from it. Random points were generated at 10 m intervals, with a value of 1 for OC 

and 0 for NO. The explanatory variables were divided into three groups: (i) morphometric variables, (ii) horizontal distances 

to roads and structural lineaments, and (iii) geo-environmental cartographic databases. Five ANN´s configurations were 

tested. Validation employed metrics such as area under the ROC curve (AUC) and overall accuracy (ACC), with the best 

modeling yielding an AUC of 0.90 and ACC of 0.84. This result utilized all explanatory variables except land use and cover, 

which caused a slight bias in the ANN due to the predominance of landslides in forested areas in the inventory. Geology 

played a crucial role in determining susceptibility. 

Keywords: Disaster Prevention, Machine Learning, Landslide Susceptibility.  

Resumo: A avaliação da suscetibilidade a deslizamentos em um município é crucial na prevenção de desastres. Redes Neurais 

Artificiais (RNA) provaram ser eficazes nessa análise. Este estudo modelou a suscetibilidade a deslizamentos em Joinville, 

Santa Catarina, usando RNA. O município tem histórico significativo desses eventos, permitindo um levantamento de áreas 

de ocorrência (OC) através do mapeamento de cicatrizes em imagens de satélite. Para áreas de não ocorrência (NO), foi 

utilizado um buffer de 1 km, subtraindo as OC. Pontos aleatórios foram gerados a cada 10 m, com valor 1 para OC e 0 para 

NO. As variáveis explicativas foram divididas em três grupos: (i) morfométricas, (ii) distâncias horizontais para estradas e 

estruturas e (iii) dados cartográficos geoambientais. Cinco configurações de RNA foram testadas. Na validação, métricas como 

área sob a curva ROC (AUC) e acurácia global (ACC) foram usadas, com a melhor modelagem apresentando AUC de 0,90 e 

ACC de 0,84. Essa configuração usou todas as variáveis explicativas, exceto uso e cobertura da terra, causando um leve viés 

na RNA, devido ao predomínio de cicatrizes em áreas florestais no inventário. A geologia desempenhou um papel crucial na 

determinação da suscetibilidade. 
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1. Introduction 

A study of susceptibility to landslide events is an effective way to mitigate disasters caused by these 

phenomena and to technically support public decision-making for sustainable municipal land use and occupation. 

Susceptibility to landslides is understood as the propensity of slopes and terrains to develop landslides processes 

and related events (SOBREIRA; SOUZA, 2012), (BRESSANI; COSTA, 2013), (MINISTÉRIO DAS CIDADES, 2013). 

Several landslide models have been developed, using approaches based on physics (conceptual models), heuristic 

analysis, and statistical methods (LUO; LIU, 2017). Each approach offers a unique perspective to evaluate 

landslides susceptibility, considering specific and complex factors. 

For example, the Geological Survey of Brazil (CPRM) and the Institute for Technological Research (IPT) use 

quantitative models combined with heuristic analysis. These models are derived from the relationship between 

the density of landslide areas in a given municipality, structural lineament density, and terrain slope (BITAR, 2014). 

This susceptibility model was designed to meet two key objectives: broad applicability across Brazil's diverse 

territory and rapid generation to support a continuous government program for mapping susceptibility charts, 

with the first efforts dating back to 2012. 

One challenge of this method is the influence of the modeler's interpretation on the final model's quality. Input 

data, such as geostructural lineaments, rely on the modeler's interpretation of the digital elevation model 

(LAMBERTY; KEPEL FILHO; NORONHA, 2015). 

The use of machine learning (ML) and artificial intelligence (AI) techniques is a robust way to assess the 

susceptibility of a region to Landslides. With the rapid advancements in remote sensing technologies in recent 

years, it is possible to collect a large volume of landslides related data more quickly and efficiently. Many 

researchers have utilized such data to model landslides susceptibility using AI methodologies (PASCALE et al., 

2013; ZHU et al., 2018; EMANI, 2020; LUCCHESE; OLIVEIRA; PEDROLLO, 2021). These methods can analyze the 

complex relationships between landslides susceptibility and its influencing factors through large datasets (ZHU et 

al., 2018). 

As highlighted by Lucchese, Oliveira, and Pedrollo (2021), artificial intelligence encompasses the theory and 

development of computer systems that simulate human intelligence. According to Zhu et al. (2018), several studies 

have applied AI to landslides susceptibility modeling (GÓMEZ; KAVZOGLU, 2004; PRADHAN; LEE, 2010; DOU 

et al., 2015; YAO et al., 2022), as these methods excel in assimilating extensive input datasets and landslides 

inventories, producing susceptibility maps with superior performance metrics (e.g., overall accuracy) compared to 

conventional modeling methods. 

Among the various ML approaches, Artificial Neural Networks (ANNs) stand out for their flexibility 

regarding data scale and their ability to incorporate both qualitative and quantitative variables into their analyses 

(KAWABATA; BANDIBAS, 2009), regardless of data distribution (WANG et al., 1995). Studies achieving 

satisfactory results in adjusting ANNs for landslides susceptibility include Pradhan and Lee (2010), who conducted 

research in Cameron Highlands, Malaysia. Using an inventory of 324 landslides polygons over 293 km² and terrain 

attributes derived from a 10 m DEM, they employed a backpropagation ANN algorithm with 10 inputs, 22 hidden 

layer neurons, and 2 outputs. Results showed that slope was the most influential variable, with the model achieving 

an AUC (Area Under the ROC Curve) of 0.83. 

Similarly, Quevedo et al. (2019a) modeled landslides susceptibility in the Rolante River Basin, northeastern 

Rio Grande do Sul, Brazil, using data from 308 landslide caused by an extreme rainfall event in 2017. Morphometric 

information extracted from a digital terrain model was used to train the ANN, yielding validation results with an 

AUC exceeding 0.9. Ullah (2022) proposed a multi-process geodynamic susceptibility mapping approach using 

three methods: ANN, logistic regression, and k-nearest neighbors (KNN). The ANN was trained on historical data 

of flash floods, debris flows, and shallow planar landslides from satellite images in Shangla District, Pakistan, using 

various geomorphometric parameters, geological maps, and land use data. The ANN outperformed the other 

methods, achieving AUC values of 0.98 for flash floods, 0.94 for landslides, and 0.98 for debris flows. 

ANNs' extrapolation ability is particularly valuable in determining landslides susceptibility in areas with little 

or no landslide occurrences. According to Gameiro (2020), ANN models are empirical and may underperform 

when extrapolating beyond the training domain. However, the author noted that spatial extrapolation in 
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geomorphologically homogeneous areas can produce satisfactory results, especially when terrain attributes are 

similar between training and testing areas. Sampling distances for non-occurrence data are a critical factor in 

obtaining better results, enabling the ANN to more effectively distinguish susceptible from non-susceptible areas. 

Gameiro's study sampled five different basins in the Serra Geral region to train ANNs for each dataset, 

emphasizing the influence of sampling on landslides susceptibility mapping. The author highlighted the 

importance of variables such as slope, LS factor, and elevation. Model accuracy improved with larger buffers for 

non-occurrence samples, and sample representativity impacted extrapolation capabilities. 

This study aims to analyze landslides susceptibility using ANNs in the municipality of Joinville, located in 

Santa Catarina, southern Brazil. Joinville has a significant history of landslides events, the most notable occurring 

in November 2008 (ODEBRECHT et al., 2017). Due to this history, Joinville has a substantial landslides inventory 

that can be leveraged to construct an ANN model and generate an accurate landslides susceptibility map. 

2. Materials and Methods 

To develop an landslides susceptibility model using ANN, it is necessary to sample areas where landslides 

have occurred, as well as areas where these events have not taken place. According to Wang et al. (2019), 

identifying these areas makes it possible to relate them to terrain attributes associated with landslides and then 

extrapolate the results to other areas based on the assumption that future landslides will occur in environments 

similar to those of past events. Therefore, for the purpose of this study, landslides within the study area were 

mapped and identified. After collecting the landslide polygons, these areas were correlated with data on terrain 

morphology and its substrate, which directly affect stability. Finally, these data were used to train an efficient 

neural network to create a terrain susceptibility model for landslides. The flowchart illustrating the preparation of 

sampling data, processing, validation, and the presentation of the susceptibility map is shown in Figure 1. 

 

Figure 1. Methodological flowchart for obtaining the susceptibility model. Source: Organized by the author. 
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2.1. Study Area 

The study of landslide susceptibility was conducted in the municipality of Joinville, Santa Catarina (Figure 1). 

Joinville is located in the northern part of the state and has the largest population. In addition to being the economic 

hub of the northern mesoregion, its urban area is expanding (IBGE 2022). According to Odebrecht et al. (2017), the 

coastline of Santa Catarina recorded extreme precipitation values between September and November 2008, 

accumulating more than 1000 mm of rainfall, with the peak on November 22 and 23. During this period, more than 

800 landslide events occurred in the municipality; however, despite the high number, the incidence of landslide in 

the urbanized area was minimal, resulting only in material damage and no fatalities. 

Figure 2 shows the landslides polygons identified in historical images from the Google Earth Pro software. To 

improve sampling and expand the landslides database, with the aim of diversifying the sample set and enhancing 

prior knowledge of the ANN model, as well as the possibility of applying the same model to adjacent 

municipalities, it was decided to extrapolate the municipal boundary. In addition to the Cubatão River basin, which 

covers the northern area of the municipality, the Itapocu River basin and its two tributaries, the Itapocuzinho and 

Jaraguá rivers, were included. The southern part of the Quiriri mountain range, to the north of the municipality, 

was also considered due to its significant collection of landslide polygons. Thus, the sum of these areas comprises 

the Sampling Area (SA), as shown in Figure 2. 

 

Figure 2. Sampling area of landslides for the study. Source: Organized by the author. 

2.2. Sampling of occurrences and non-occurrences. 

The mapping of the landslide polygons inventory was carried out through visual interpretation and 

vectorization, using remote sensing images from the Google Earth PRO software, as done in the works of Pham et 

al. (2017) and Wang et al. (2019). A total of 784 landslides were identified and mapped, including both the area of 

initiation and the area of impact of the landslides, from 2009 to 2018. The area of landslide impact within the 

perimeter of the Sampling Area (SA) was also mapped. After defining the occurrence areas, random points were 

generated within these areas using ArcGIS PRO 3.01 software (ESRI, 2023), with a minimum spacing of 10 meters 

between them, totaling 20,480 occurrence sampling points. 
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According to Lucchese, Oliveira, and Pedrollo (2021), one of the considerations related to sampling locations 

where landslides did not occur is the definition of a maximum distance from the landslide polygon. This 

determination is of great importance as it aims to prevent sample collection being restricted to areas close to 

landslides. A broader approach in sampling non-occurrence locations is effective for understanding the factors that 

influenced landslide in the polygon, in contrast to surrounding areas. Additionally, this approach considers the 

premise that rainfall, which can trigger landslide events, shows significant spatial variability. However, 

recommending the selection of areas too far from the landslides may be inappropriate, as there is no guarantee 

that both areas experienced the same amount of rainfall as the region of the landslides. 

Therefore, for generating the non-occurrence area inventory, a buffer with a 1 km radius from the landslides 

was created, excluding the landslides areas, which prevents the collection of non-occurrence samples in these areas. 

The occurrence and non-occurrence areas are exemplified in Figure 3. Random points were then generated in the 

perimeter of this non-occurrence area, with the same spacing as the occurrence areas, limited to the same number 

of 20,480 sample points, maintaining a balanced (1:1) ratio between the two sample groups to avoid biasing the 

ANN model. Finally, the samples were classified with the value 1 for occurrence points and value 0 for non-

occurrence points. 

 

Figure 3. Areas of landslide occurrence and non-occurrence (1 km radius buffer). Source: Organized by the author. 

2.3. Dataset 

The research by Reichenbach et al. (2018) highlights several variables that help explain the occurrence of 

landslides, making the careful selection of variables crucial for creating a reliable and robust susceptibility model. 

In this context, input data were selected to train the network that, in addition to influencing landslides in general, 

were in tune with the geomorphology and nature of the substrate of the Sampling Area (SA). The selected 

parameters were categorized into three sets: those related to terrain morphometry, those related to distances 

between structural lineaments and roads, and those derived from cartographic sources with qualitative geo-

environmental characteristics. This comprehensive approach aims to ensure a more accurate and robust model of 

landslides susceptibility for the specific region under investigation. The selected variables are presented in Table 

1. 
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Table 1. Explanatory variables used for modeling landslides susceptibility in Joinville, Santa Catarina State. 

Variable Source 

Altimetry (ALT) SDS DEM 1m. 

Aspect (ASP) SDS DEM 1m. 

Slope (SLP) SDS DEM 1m. 

Horizontal Distance to Roads (HDR) Open Street Map (2023) 

Horizontal Distance to Lithostructural Lineaments (HDLL) SDS DEM 1m intepetration. 

Topographic Wetness Index (TWI) SDS DEM 1m. 

Geology Geological Map of the State of Santa Catarina - CPRM (2014) 

Land Use and Cover MAPBIOMAS (2021) 

Pedology IBGE (2021) 

 

The processing to obtain the morphometric data for the model was based on the Digital Elevation Model 

(DEM) provided by the Secretariat of State for Sustainable Economic Development (SDS) of the Government of the 

State of Santa Catarina. This DEM has spatial and altimetric resolution of 1 meter (SIGSC, 2017) and was obtained 

through aerial survey. The data is available for free on the SIGSC portal. For better computational performance, 

this DEM was resampled to a pixel size of 5 meters. The processing to obtain this dataset was carried out in ArcGIS 

PRO 3.01 software (ESRI, 2023). To ensure that the morphometric data is on the same scale, a network of equidistant 

points every 5 meters, both vertically and horizontally, was created. Then, the values of each morphometric 

variable were extracted for each point. With these values, a raster for each variable was generated using the Topo 

to Raster tool in ArcGIS PRO 3.01 software 

2.3.1. Morfometric variables 

The morphometric variables chosen for the study are: Altimetry (ALT), Slope (SLP), Aspect (ASP), and 

Topographic Wetness Index (TWI). These variables are shown in Figure 4. The ALT data are obtained from the 

DEM, where each pixel represents the altitude of a point. The study area has an altimetric range from 0 to 1540 

meters. The SLP of the terrain is expressed in degrees and is directly related to the stability of the terrain. The ASP, 

or Aspect, has values in degrees ranging from 0 to 360. Some studies indicate that ASP has an indirect influence on 

slope stability due to the effects of precipitation, wind, and solar radiation impacting a specific slope face, resulting 

in distinct conditions of moisture, weathering, and prevailing vegetation on the terrain (BRAGAGNOLO et al., 

2020 citing CHEN et al., 2017; DING et al., 2017; TIEN BUI et al., 2017). 

According to Beven & Kirkby (1979), the Topographic Wetness Index (TWI) assesses the surface runoff and 

moisture accumulation in the terrain. It is defined as a logarithmic function of slope and contributing area, as 

shown in Equation 1. 

𝑇𝑊𝐼 = 𝑙𝑛(
𝐴𝑠

𝑡𝑎𝑛𝐵
) 

(1) 

where: A is the contributing area and B is the slope of the terrain. The TWI aims to represent the topographic 

control of soil moisture. According to Tien Bui et al. (2017), the susceptibility to landslides can be estimated as a 

function of the relationship between the topographic effects on the hydrological response of an area, directly 

influencing the pore pressure in the soil. 
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Figure 4. Selected morphometric variables for the study: Altimetry (ALT); Aspect (ASP), Slope (SLP), and 

Topographic Wetness Index (TWI). Source: Organized by the author. 

2.3.2. Horizontal Distance to Roads. 

In the study, two distance variables were used: Horizontal Distance to Roads (HDR) and Horizontal Distance 

to Lithostructural Lineaments (HDLL) (Figure 5). HDR is related to the degree of human intervention in the terrain, 

which can induce landslides on slopes cut by roads. To obtain the HDR, OpenStreetMap was used through the 

OSMDowloader plugin in QGIS 3.28, followed by the calculation of the Euclidean distance. On the other hand, 

HDLL is associated with the degree of fracturing in the rock substrate, resulting from geological structural 

deformations of a ruptile type. The HDLL was obtained by delimiting valleys defined by linear structures in the 

Digital Elevation Model (DEM), followed by vectorization and conversion into an image, also using the Euclidean 

distance calculation. 

 

Figure 5. Horizontal Distance to Roads (HDR) and Horizontal Distance to Lithostructural Lineaments (HDLL) 

variables for the Sampling Area (SA). Source: Organized by the author. 
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2.3.3. Geoenvironmental Cartographic Database 

Geology is widely used in susceptibility models (WANG et al., 2019). Different lithologies influence various 

levels of susceptibility (CHEN et al., 2017), as this variable is responsible for defining the shear strength of the 

materials that make up the slopes, playing a crucial role in determining their stability condition (ZÊZERE et al., 

2017). For this study, lithology was obtained from the Geological Map of the State of Santa Catarina, provided by 

the Geological Service of Brazil - CPRM (2014), available at a scale of 1:500,000. Although it has a smaller scale than 

the one used for morphometric variables, this data was chosen due to its availability throughout the study area 

and its qualitative nature. The geological units were reinterpreted as lithological units to simplify the input into 

the neural network model (ANN). 

According to Pham et al. (2016), the study of Land Use and Cover is relevant for identifying areas susceptible 

to landslides, especially considering the presence and removal of vegetation. For this purpose, the dataset from the 

Annual Mapping Project of Land Cover and Use of Brazil (MAPBIOMAS), collection 7.1, corresponding to the year 

2021, at a scale of 1:100,000, was used. The land use and cover classes were simplified to Level 1, i.e., grouped 

according to the type of formation. The pedological data used in the study was provided by the Brazilian Institute 

of Geography and Statistics - IBGE (2021), at a scale of 1:250,000, and grouped according to the texture of each 

pedotype. Figure 6 shows the qualitative data used as input for training the neural network model. 

 

Figure 6. Geoenvironmental and qualitative database for the study area. Source: Organized by the author. 
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Since the classes of the qualitative maps of lithology, pedology, and land use and cover do not have an ordinal 

relationship, a one-hot encoding approach was adopted, where each class was represented as a combination of 

images with 0 or 1 codes. For the 17 lithology classes, 5 binary images were defined, which when combined allow 

the neural network (ANN) to differentiate all the classes. For the 4 land use and cover classes, 2 binary images were 

defined, while for the 14 soil type classes, 4 binary images were defined. 

Finally, once the input dataset for the ANN was defined, the values of the variables were extracted for each 

sampling point, both for occurrence and non-occurrence cases. This extraction was performed using ArcGIS PRO 

3.01 (ESRI, 2023). Additionally, an exploratory data analysis was conducted using boxplot-type graphs to 

investigate the relationship between the explanatory variables and the dependent variable. 

2.4. Artificial Neural Networks 

For this study, a Multilayer Perceptron (MLP) model of Artificial Neural Networks (ANNs) was employed, 

following the backpropagation method with multiple layers proposed by Rumelhart et al. (1986). The MATLAB 

2021 software was used for network training, applying the Delta Rule (WIDROW; HOFF, 1960) for updating 

synaptic weights, through a script developed by the authors. Additionally, a parallel series cross-validation 

technique was adopted to avoid overfitting the network. The values of the variables were normalized through 

linear transformations, and the activation function used in the neurons was the sigmoid function. 

Tests were conducted with five ANN configurations. The first configuration included all the input data from 

the proposed base (ANN 1). The other configurations excluded the qualitative data individually: one ANN without 

the geological data (ANN 2), another without the land use and cover data (ANN 3), and a third without the 

pedological data (ANN 4). Finally, an ANN with only morphometric data and distances (ANN 5) was tested to 

assess the impact of these data on the outcome. The maximum number of iterations or initializations for each ANN 

was set to 5, and the number of learning cycles was set to 50,000 for all configurations. The number of neurons for 

training the ANN followed the equation 2x+1, where x is the number of input variables. 

The samples were divided into three sets: 50% for training, 25% for testing, and 25% for cross-validation. For 

model validation, global accuracy (ACC) and Area Under the Curve (AUC) metrics were used, according to Delong 

et al. (1988). The validations followed the same procedure as adopted by Lucchese et al. (2021) and Oliveira et al. 

(2019). Global accuracy is calculated by the following equation: 

 𝐴𝐶𝐶 = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

In which: TP is the True Positives index, TN is the True Negatives index, FP is the False Positives index, and FN is 

the False Negatives index. 

AUC is the area under the ROC curve, which expresses the relationship between the True Positive Rate (TPR) 

and the False Positive Rate (FPR). The samples were divided into several groups of two classes using different 

thresholds. For each division, we calculated the TPR and FPR, thus constructing the ROC curve (FAWCETT, 2006). 

The relationships are given by the following equations: 

 𝑇𝑃𝑅 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (3) 

and, 

 
𝐹𝑃𝑅 =

𝐹𝑃

(𝐹𝑃 + 𝑇𝑁)
 (4) 

In which: TP is the True Positives index, TN is the True Negatives index, FP is the False Positives index, and FN is 

the False Negatives index. 

The model result is obtained in the form of an image containing values in the range of 0 to 1. These values 

were reclassified into 5 classes using natural breaks statistics, and each class was related to levels of susceptibility 

to landslides. 
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3. Results and discussion 

For an initial statistical analysis, occurrence and non-occurrence samples for each morphometric measure 

were plotted in boxplot graphs, as shown in Figure 7. The topographic analysis revealed that most of the landslides 

occur at altitudes between 400 and 750 meters, with a median of 539.86 meters and a standard deviation of 226.01 

meters. However, unlike the studies by Kawata and Bandibas (2009) and Chen et al. (2017), which identified this 

as a predominant attribute, in Joinville, the occurrence and non-occurrence data overlap, making it difficult to 

determine a preferred altitude for landslide occurrence. This discrepancy may be related to the topography of 

Joinville, where, despite a large range of altitudes, the terrain morphology consists of flattened forms separated by 

a large plateau escarpment, with the highest number of landslide occurrences concentrated in this escarpment. 

The analysis of natural terrain slope (SLP) showed that angles above 30° are susceptible to landslides; the 

median slope is calculated at 35.74°, with a standard deviation of 10.46°. The SLP variable is recognized in several 

studies as one of the most significantly associated factors with landslide occurrence (PRADHAN; LEE, 2010; 

OLIVEIRA et al., 2018; QUEVEDO et al., 2019b). Similarly, the SLP variable stands out as the one that most 

effectively differentiates the occurrence and non-occurrence sample sets in Joinville, compared to other variables. 

Therefore, it is believed that this is the explanatory variable for the landslide model studied here. It is important to 

note that most areas with a slope above 30° in Joinville are associated with the plateau escarpment in the NE-SW 

direction, meaning this structural trend appears to influence susceptibility. In agreement with the previous 

information, the analysis of Aspect (ASP) indicated that most landslides occur in areas belonging to the second 

quadrant, meaning the direction of movement is towards the SE. 

HDR data indicate that landslides are more frequent as they move away from the main roadways. In contrast, 

it is observed that landslides have a preferential occurrence near structural lineaments, suggesting that the primary 

nature of landslides in this region is influenced by local geological and geomorphological factors. Furthermore, the 

presence of human activities seems to have a reduced contribution to inducing these landslides within the studied 

sample area. The concentration of low TWI values indicates reduced topographic moisture retention in the 

locations of occurrence. However, the medians of the TWI indices for occurrence and non-occurrence are very 

close, making it difficult to establish a direct correlation. 

Figure 8 presents the relationship between landslides and geoenvironmental data. It is noteworthy that a 

significant majority of landslides occur in lithotypes related to granites, orthogneisses, granulites, and orthogneiss 

granulites. Regarding land use and cover, landslides are predominantly associated with the Forest class. 

Additionally, the soil texture predominant in landslide areas is primarily related to soils of medium and clayey 

composition, presumably derived from high-grade igneous and metamorphic rocks. Overall, landslide occurrences 

in Joinville are associated with vegetated areas, with a shallow weathering profile, derived from granite and 

metamorphic rocks, with average slopes of 35.74°. 
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Figure 7. Boxplot graphs related to each morphometric data, divided into occurrence (OC) and non-occurrence (NO) 

areas. Legend: ALT is the altitude in meters; SLP is the slope in degrees; ASP is the Aspect in degrees; HDR is the 

horizontal distance from roads in meters; HDLL is the horizontal distance from lithostructural lineaments in meters; 

and TWI is the topographic moisture index (dimensionless). Source: Organized by the author. 
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Figure 8 – Number of Landslide Occurrences versus Geoenvironmental Cartographic Data: (a) Number of 

occurrences x Lithology; (b) Number of occurrences x Land Use and Cover; and (c) Pedology. 

The AUC and ACC values obtained in the five ANN simulations are presented in Table 2. The objective was 

to select models with an accuracy greater than 80% (PRADHAN; LEE, 2010; DOU et al., 2015), a criterion that all 

models exceeded. Although the simulations in this study showed approximately similar accuracy results, 

simulation ANN 3 achieved the best performance, with AUC values of 0.9 and ACC close to 84% for the 

municipality of Joinville. These results are similar to those found by Quevedo et al. (2019) in their model for the 

Rio Rolante Watershed (AUC > 0.9) and by Gameiro (2020) in models produced for the southern, central, and 

northeastern regions of the state of Santa Catarina (AUC between 0.87 and 0.93). This parity is significant, as these 

regions share very similar geomorphological conditions. The output products calculated by the ANN are shown 

in Figure 9, highlighting the main differences in the models calculated by the ANN. Figure 10 shows the total area 

of each susceptibility class for the five ANN simulations. 
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Table 2. Performance metric of the models for the different sample sets. 

  ANN 1 ANN 2 ANN 3 ANN 4 ANN 5 
A

U
C

 
Training 0.901 0.873 0.909 0.903 0.849 

Test 0.882 0.854 0.887 0.875 0.836 

Cross-validation 0.887 0.866 0.893 0.885 0.846 

      

A
C

C
 

Training 0.848 0.807 0.856 0.843 0.782 

Test 0.823 0.789 0.829 0.814 0.768 

Cross-validation 0.828 0.803 0.838 0.822 0.776 

      

 

 

Figure 9. Output maps calculated by the ANN for each sample set – (a) ANN1: All input data for the model; (b) 

ANN2: Without lithology data; (c) ANN3: Without land use and cover data, showing the best accuracy results; (d) 

ANN4: Without soil data; and (e) ANN5: Without all qualitative geoenvironmental cartographic data. Source: 

Organized by the author. 
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Figure 10. Total area of each susceptibility class for the five ANN simulations. In an initial analysis, it is observed 

that areas classified as not susceptible maintain similar values across all simulations, which can be attributed to the 

extensive flat regions of the municipality. The variations in the results are more pronounced in the classes susceptible 

to landslides. 

The ANN 3 simulation, with the best accuracy results, was made with all variables except the land use and 

cover data. It is believed that this result is due to the higher concentration of landslides samples in the Forest class 

of the land use and cover attribute, as shown in Figure 8. In other words, this attribute is introducing a bias in the 

network, making it assume that where there is forest, there are occurrences, thereby reducing the weight of other 

factors, such as slope. For this reason, when this attribute is included in the network, the network’s ability to 

generalize to other areas is diminished, such as the municipal urban center, which has areas of landslide 

occurrences and is included in the non-vegetated class of land use and cover. For the variables in the ANN 3 

simulation, the relative importance percentages or Relative Contribution Index (RCI) were calculated according to 

Oliveira, Pedrollo, and Castro (2015) and are shown in Table 3.  
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Table 3. Relative importance of the variables used in the ANN 3 simulation. 

Class RCI Importance 

LITOLOGY 33% 

PEDOLOGY:TEXTURE 24% 

ALTIMETRY 11% 

SLOPE 11% 

HORIZONTAL DISTANCE TO ROADS 10% 

HORIZONTAL DISTANCE TO LITHOSTRUCTURAL LINEAMENTS 5% 

 

When comparing the result maps produced by ANN 3 and ANN 1, which represent simulations with the 

highest and second-highest performance, respectively, and despite having similar accuracy results, it is visually 

apparent that ANN 1 tends to classify susceptible areas on the slopes of the urban center more conservatively. This 

difference in spatial pattern, even in cases of similar accuracy, has been evidenced in previous studies, such as 

those by Oliveira et al. (2019) and Gameiro (2020). Therefore, as emphasized by Gameiro (2020), the visual analysis 

of maps derived from empirical mathematical models, which are based on the relationships between input 

variables and expected output, plays a fundamental role. 

The model resulting from ANN 4 simulation shows the third-best performance in terms of accuracy, 

displaying a more cautious tendency in categorizing the slopes in the eastern part of the municipality, when 

compared to the models generated by ANN s 1 and 3. Additionally, this model presents a higher amount of areas 

classified as susceptible at medium levels, compared to the two previously mentioned models. This variation in 

classification is likely due to the exclusion, in the model, of the separation between the classes of argisols and 

neosols. The latter class is characterized by shallow soils found in steeper terrain, which are directly associated 

with the predominant occurrences in the northern portion of the municipality. 

Simulations ANN 2 and ANN 5 show lower accuracies than the others, especially ANN 5. Despite having 

AUC values above 0.8, ANN 5 shows an overall accuracy below this threshold. Both models were simulated 

without the geological framework, giving more weight to SLP and HDLL. A visual analysis of these results shows 

a reduced ability to generalize in areas with fewer occurrence samples, with a more conservative classification 

compared to the other models, emphasizing the medium susceptibility class. This highlights the importance of the 

geological substrate for a more precise weighting of the susceptibility model for Joinville. 

To conclude the process of creating the susceptibility map for the municipality of Joinville, the image resulting 

from ANN 3 simulation, previously reclassified into 5 susceptibility classes, was converted to vector format using 

ArcGIS PRO 3.01 software (ESRI, 2023). To adjust the data to a 1:10,000 scale, polygons smaller than 10 km², or 1 

ha, were removed, and a smoothing function was applied. The result of this procedure can be seen in Figure 11. 
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Figure 11. Landslide Susceptibility Map of the Municipality of Joinville-SC. Source: Organized by the author. 

4. Conclusions 

The results show that it was possible to obtain a landslide susceptibility model for the municipality of 

Joinville-SC, with satisfactory global accuracy and AUC indices, through the use of ANNs. Of all the models tested, 

simulation ANN 3 showed the best performance, with AUC values of 0.9 and ACC of 84%. Eighteen variables and 

30 neurons in the hidden layer were used for the ANN application. 

The analysis of morphometric variables shows a significant importance of the SLP and ASP data, indicating 

an important structural geological conditioning factor for the region. It is emphasized here that the SLP variable is 

likely the explanatory variable for the model proposed here. The HDR and HDLL data corroborate this analysis 

and demonstrate that landslides in the study area have low anthropogenic induction. 

Qualitative data, when used, should be selected according to the context of landslides in the study area. In 

this work, it was found that the geological nature of the municipality has an important influence on the 

determination of land susceptibility. On the other hand, the use and occupation data caused a slight network bias, 
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which slightly reduced accuracy and diminished the generalization ability for areas without landslide occurrence 

sampling. Furthermore, higher resolution data would lead to better results. 

This study demonstrates that ANNs are a robust tool for landslide susceptibility assessment, helping in 

disaster prevention and sustainable urban planning. The model developed for the municipality of Joinville proved 

effective in identifying areas prone to landslides, providing information for territorial management and risk 

reduction. However, it is essential to validate the data published here in the field to ensure its effectiveness. 
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